平方根教案設計
平方根教案設計
學習目標:
1、在實際問題中,感受算術平方根存在的意義,理解算術平方根的概念,算術平方根具有雙重非負性
2、會用計算器求一個數的算術平方根;利用計算器探究被開方數擴大(或縮小)與它的算術平方根擴大(或縮小)的規律;
學習重點:理解算術平方根的概念
學習難點:算術平方根具有雙重非負性
學習過程:
一、學習準備
1、閱讀課本第3頁,由題意得出方程x= ,那么X= ,
這種地磚一塊的邊長為 m
2、正數a有2個平方根,其中正數a的正的平方根,也叫做a的算術平方根。
例如,4的平方根是 , 叫做4的算術平方根,記作 =2,
2的平方根是“ ”, 叫做2的算術平方根,
3、(1)16的算術平方根的平方根是什么? 5的算術平方根是什么?
(2)0的算術平方根是什么? 0的算術平方根有幾個?
(3)2、-5、-6有算術平方根嗎?為什么?
4、按課本第4頁例題1格式求下列各數的算術平方根:
(1)625(2)0. 81;(3)6;(4) (5) (6)
二、合作探究:
1、閱讀課本第5頁利用計算器求算術平方根的方法,利用計算器求下列各式的值。
(1) (2) (3)
2、利用計算器求下列各數的算術平方根
a2000020020.020.0002
通過觀察算術平方根,歸納被開方數與算術平方根之間小數點的變化規律
3、在 中, 表示一個 數, 表示一個 數,算術平方根具有
練習:若a-5+ =0,則 的平方根是
三、學習:
本節課你學到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
四、自我測試:
1、判斷下列說法是否正確:
①5是25的算術平方根;( )②-6是 的算術平方根; ( )
③ 0的算術平方根是0;( ) ④ 0.01是0.1的算術平方根; ( )
⑤一個正方形的邊長就是這個正方形的面積的算術平方根. ( )
2、若 =2.291, =7.246,那么 =( )
A.22.91 B. 72.46 C.229.1 D.724.6
3、下列各式哪些有意義,哪些沒有意義?
4、求下列各數的算術平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值 ① ② ③ ④
思維拓展:
1、一個數的算術平方根等于它本身,這個數是 。
2、若x=16,則5-x的算術平方根是 。
3、若4a+1的平方根是±5,則a的算術平方根是 。
4、 的平方根等于 ,算術平方根等于 。
5、若a-9+ =0,則 的平方根是
6、 的平方根等于 ,算術平方根是 。
7、 ,求xy算術平方根是。
數學小知識——怎樣用筆算開平方
我國古代數學的成就燦爛輝煌,早在公元前一世紀問世的我國經典數學著作《九章算術》里,就在世界數學史上第一次介紹了上述筆算開平方法.據史料記載,國外直到公元五世紀才有對于開平方法的介紹.這表明,古代對于開方的研究我國在世界上是遙遙領先的.
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第 二段數組成第一個余數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小于或等于余數,試商就是平方根的第二位數;如果所得的積大于余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.如圖2所示分別求85264, 12.5平方根的過程。自己舉例試試!
【平方根教案設計】相關文章:
讓心飛翔教案設計01-24
教案設計:破釜沉舟07-19
《天窗》優秀教案設計06-08
《楊氏之子》教案設計02-11
認識南瓜教案設計02-11
白帆音樂教案設計01-25
食物的變質教案設計02-23
《多彩的拉花》教案設計02-25
斜拋運動教案設計04-19
《平面向量》教案設計01-29