圓周角教案設(shè)計及反思

時間:2021-06-12 20:38:54 教案 我要投稿

圓周角教案設(shè)計及反思

  教材依據(jù)

圓周角教案設(shè)計及反思

  圓周角是新課標(biāo)人教版九年級數(shù)學(xué)上冊第二十四章第一節(jié)圓的有關(guān)性質(zhì)的重要內(nèi)容,本節(jié)內(nèi)容依據(jù)新人教版九年級《課程標(biāo)準(zhǔn)》和《教師教學(xué)用書》及《初中數(shù)學(xué)新教材詳解》。

  設(shè)計思想

  本節(jié)課是在學(xué)習(xí)了圓心角的定義、性質(zhì)定理和推論的基礎(chǔ)上,由生活實例引出圓周角,類比圓心角認(rèn)識圓周角,類比圓心角的性質(zhì)探究圓周角定理,精選例題及習(xí)題對本節(jié)內(nèi)容進(jìn)行遷移應(yīng)用。

  在教學(xué)過程中本著“以人為本,讓課堂變?yōu)閷W(xué)堂,把時間和空間更多地留給學(xué)生”為原則,注重學(xué)生的實踐活動,通過讓學(xué)生作圖、度量、分析、猜想、驗證得出結(jié)論,教學(xué)過程中充分利用學(xué)生已有的認(rèn)知水平,由淺入深、逐層遞進(jìn),并能適時地應(yīng)用直觀教具引導(dǎo)學(xué)生運用分類討論及轉(zhuǎn)化的數(shù)學(xué)思想對圓周角定理進(jìn)行證明,化解本節(jié)課的難點。這樣學(xué)生易于接受新知識,也能很快地理解并掌握圓周角定理的內(nèi)容,同時給學(xué)生自主探索留有很大空間,讓學(xué)生在實踐探究、合作交流活動中,親身體驗應(yīng)用數(shù)學(xué)的樂趣和成功的喜悅,發(fā)展學(xué)生的思維,培養(yǎng)學(xué)生的多種學(xué)習(xí)能力。

  教學(xué)目標(biāo)

  1.知識與技能

  (1)理解圓周角的概念,掌握圓周角定理,并運用它進(jìn)行簡單的論證和計算。

  (2)經(jīng)歷圓周角定理的證明,使學(xué)生初步學(xué)會運用分類討論的數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想解決問題。

  2.過程與方法

  采用“活動與探究”的學(xué)習(xí)方法,由感性到理性、由簡單到復(fù)雜、由特殊到一般的思維過程研究新知識,引導(dǎo)學(xué)生理解知識的發(fā)生發(fā)展過程,并使學(xué)生能應(yīng)用所學(xué)知識解決簡單的實際問題。

  3.情感、態(tài)度與價值觀

  通過學(xué)生探索圓周角定理,自主學(xué)習(xí)、合作交流的學(xué)習(xí)過程,激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)數(shù)學(xué)的自信心。

  教學(xué)重點

  圓周角的概念、圓周角定理及應(yīng)用。

  教學(xué)難點

  圓周角定理的探究過程及定理的應(yīng)用。

  教學(xué)準(zhǔn)備

  學(xué)生:圓規(guī)、量角器、尺子

  教師:多媒體課件、活動教具

  教學(xué)過程

  一、 創(chuàng)設(shè)情景,引入新課

  大屏幕顯示學(xué)生熟悉的畫面(足球射門游戲)

  足球場有句順口溜:“沖向球門跑,越近就越好;歪著球門跑,射點要選好。”其中蘊藏了一定的數(shù)學(xué)道理,學(xué)習(xí)了本節(jié)課,我們就可以解釋其中的道理。

  二、實踐探索,揭示新知

  (一)圓周角的概念

  在射門游戲中,球員射中球門的難易程度與他所處的`位置B對球門AC的張角∠ABC有關(guān).(教師出示圖片,提出問題)

  圖中∠ABC是圓心角嗎?什么是圓心角?圖中∠ABC有什么特點?

  (學(xué)生通過與圓心角的類比、分析、觀察得出∠ABC的特點,進(jìn)而概括出圓周角的概念,教師引導(dǎo)并板書)

  定義:頂點在圓上,并且兩邊都與圓相交的角叫做圓周角。

  概念辨析:

  判斷下列各圖形中的角是不是圓周角,并說明理由。(圖略)

  (通過概念辨析,讓學(xué)生理解圓周角的定義,提高學(xué)生的語言表達(dá)能力,教師強調(diào)知識要點)

  強調(diào):圓周角必須具備的兩個條件:①頂點在圓上;②兩邊都與圓相交.

  (二)圓周角定理

  1.提出問題,引發(fā)思考

  類比圓心角的結(jié)論:同弧或等弧所對的圓心角相等。提出本節(jié)課研究的問題:同弧或等弧所對的圓周角相等嗎?為了搞清這個問題,我們可以先研究:同弧所對的圓心角和圓周角的關(guān)系。

  2.活動與探究

  畫一個圓心角,然后再畫同弧所對的圓周角。你能畫多少個圓周角? 用量角器量一量這些圓周角及圓心角的度數(shù),你有何發(fā)現(xiàn)呢?

  (教師提出問題,學(xué)生作圖、度量、分析、歸納出發(fā)現(xiàn)的結(jié)論。)

  結(jié)論:(1)同一條弧所對的圓周角有無數(shù)個,同弧所對的任意一個圓周角都相等。

  (2)同一條弧所對的圓周角等于它所對的圓心角的一半.

  由上述操作可以看出:同一條弧所對的任意一個圓周角都等于該條弧所對的圓心角的一半。

  (學(xué)生通過實踐探究,討論概括出結(jié)論,教師點評)

  3.推理與論證

  (1)教師演示活動教具,一條弧所對的圓心角只有一個,所對的圓周角有無數(shù)個,我們沒有辦法一一論證,提出本節(jié)課研究方法:分類討論法。

  (教師演示,引導(dǎo)學(xué)生觀察圓心與圓周角的位置關(guān)系,學(xué)生觀察、小組交流,最后得出結(jié)論,教師出示圓心和圓周角的三種位置關(guān)系圖片)

  (2)分類討論,證明結(jié)論 ① 當(dāng)圓心在圓周角的一條邊上時,如何證明?(從特殊情況入手,學(xué)生通過觀察、分析、討論,證明所發(fā)現(xiàn)的結(jié)論,教師鼓勵學(xué)生看清此數(shù)學(xué)模型。)

  ②另外兩種情況如何證明,可否轉(zhuǎn)化成第一種情況呢?

  (學(xué)生采取小組合作的學(xué)習(xí)方式進(jìn)行探索發(fā)現(xiàn),教師巡視指導(dǎo),啟發(fā)并引導(dǎo)學(xué)生,通過添加輔助線,將問題進(jìn)行轉(zhuǎn)化,學(xué)生寫出證明過程,并討論歸納出結(jié)論,教師做出點評)

  結(jié)論:在同圓中,同弧所對的圓周角相等,都等于該條弧所對圓心角的一半

  4.變式拓展,引出重點

  將上述結(jié)論改為“在同圓或等圓中,等弧所對的圓周角相等嗎?

  (學(xué)生思考、推理、討論、總結(jié)出圓周角定理,教師板書)

  圓周角定理: 在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。

  強調(diào):(1)定理的適用范圍:同圓或等圓(2)同弧或等弧所對的圓周角相等(3)同弧或等弧所對的圓周角等于它所對圓心角的一半

  (教師強調(diào)圓周角定理的內(nèi)容,學(xué)生思考、默記、熟悉定理,加深對定理的理解)

  三、應(yīng)用練習(xí),鞏固提高

  1.范例精析:

  例:如圖,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(圖略)

  (鼓勵學(xué)生用多種方法解決問題,發(fā)散學(xué)生的思維,培養(yǎng)學(xué)生良好的思維品質(zhì),讓學(xué)生書寫推力計算過程,教師補充、點評、并和學(xué)生一起歸納解法。兩種解法分別應(yīng)用了圓周角定理中的兩個結(jié)論,進(jìn)一步對本節(jié)課的重點知識熟練深化,同時又培養(yǎng)了學(xué)生規(guī)范的書寫表達(dá)能力)

  2.應(yīng)用遷移:

  (1)比比看誰算得快:(圖略)

  (本小題既可鞏固圓周角定理,又可培養(yǎng)學(xué)生的競爭意識以適應(yīng)時代的要求,同時對回答問題積極準(zhǔn)確的學(xué)生提出表揚,激發(fā)學(xué)生的學(xué)習(xí)積極性)

  (2)生活中的數(shù)學(xué)

  如圖.在足球比賽中,甲帶球向?qū)Ψ角蜷TPQ進(jìn)攻,當(dāng)他帶球沖到A點時,同伴乙已經(jīng)沖到B點,這時甲是直接射門好,還是將球傳給乙,讓乙射門好﹙僅從射門角度考慮﹚(圖略)

  (選用學(xué)生熟悉的生活材料,讓學(xué)生通過合作交流,討論找出合理的解答方法,通過本小題的練習(xí),使學(xué)生體味到生活離不開數(shù)學(xué),從而激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識)

  四、總結(jié)評價,感悟收獲

  通過本節(jié)課的學(xué)習(xí)你有哪些收獲?(學(xué)生歸納總結(jié),老師點評)

  知識:(1)圓周角的定義;

  (2)圓周角定理。

  能力:觀察、操作、分析、歸納、表達(dá)等能力.

  思想方法:分類討論思想、轉(zhuǎn)化思想、類比思想、數(shù)形結(jié)合思想、

  五、作業(yè)設(shè)計,查漏補缺

  1.課本習(xí)題:P88.1,2,3,P89.5,P124.11

  2.在⊙O中,圓心角∠AOB=70°,點C是⊙O上異于A、B的一點,求圓周角∠AOB的度數(shù)。

  3.生活中的數(shù)學(xué):監(jiān)控器的監(jiān)控范圍是65度,圓形的博物館內(nèi)需要安裝幾盞才能全方位監(jiān)控?(圖略)

  (設(shè)計課本習(xí)題與課外拓展作業(yè),不僅可以使學(xué)生對本節(jié)課的知識加以鞏固、提高和查漏補缺,而且讓學(xué)生會用數(shù)學(xué)的眼光和頭腦去觀察和思考世界,達(dá)到學(xué)以致用)

  教學(xué)反思

  成功之處:本節(jié)課內(nèi)容豐富,結(jié)構(gòu)合理,設(shè)計精細(xì)。教學(xué)時能根據(jù)學(xué)生實際遵循認(rèn)知規(guī)律,由淺入深,循序漸進(jìn),及時了解學(xué)生的學(xué)習(xí)情況,靈活調(diào)整教學(xué)內(nèi)容。能適時的用教材又不拘泥于教材,挖掘教材的多種功能,在教學(xué)結(jié)構(gòu)的安排上也體現(xiàn)了新課標(biāo)、新理念,重視學(xué)生自主學(xué)習(xí)、自主探究、合作交流、主動地觀察與思考,各個環(huán)節(jié)銜接緊密、合理、流暢,教學(xué)效果比較理想。

  不足之處:學(xué)生不易理解用分類討論思想證明圓周角定理,在后面的教學(xué)中逐步讓學(xué)生了解分類討論思想在解題時的應(yīng)用。另外學(xué)生語言表達(dá)的準(zhǔn)確性還需不斷加強。

【圓周角教案設(shè)計及反思】相關(guān)文章:

圓周角的教學(xué)反思02-22

圓周角教學(xué)反思05-17

圓周角教學(xué)反思05-17

圓周角定理的教學(xué)反思05-13

《圓周角與圓心角的關(guān)系》教學(xué)反思范文12-29

《圓周角的概念和圓周角定理》備課教案04-25

圓周角和圓心角的關(guān)系教學(xué)反思范文11-25

數(shù)學(xué)《圓周角和圓心角的關(guān)系》教學(xué)反思09-11

圓周角教學(xué)課件03-31

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
伊人久久大香线蕉综合5g孕妇 | 最新国产精品精品自 | 中文字幕精品另类 | 色狠狠久久Av五月综合 | 日韩欧美国产手机在线观看 | 中文字幕不卡高清视频在线 |