冪函數教案
作為一名教職工,常常需要準備教案,教案是教學活動的依據,有著重要的地位。寫教案需要注意哪些格式呢?下面是小編為大家收集的冪函數教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
冪函數教案1
教學目標
1.使學生理解函數單調性的概念,并能判斷一些簡單函數在給定區間上的單調性.
2.通過函數單調性概念的教學,培養學生分析問題、認識問題的能力.通過例題培養學生利用定義進行推理的邏輯思維能力.
3.通過本節課的教學,滲透數形結合的數學思想,對學生進行辯證唯物主義的教育.
教學重點與難點
教學重點:函數單調性的概念.
教學難點:函數單調性的判定.
教學過程設計
一、引入新課
師:請同學們觀察下面兩組在相應區間上的函數,然后指出這兩組函數之間在性質上的主要區別是什么?
(用投影幻燈給出兩組函數的圖象.)
第一組:
第二組:
生:第一組函數,函數值y隨x的增大而增大;第二組函數,函數值y隨x的增大而減小.
師:(手執投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數的主要區別.當x變大時,第一組函數的函數值都變大,而第二組函數的函數值都變小.雖然在每一組函數中,函數值變大或變小的方式并不相同,但每一組函數卻具有一種共同的性質.我們在學習一次函數、二次函數、反比例函數以及冪函數時,就曾經根據函數的圖象研究過函數的函數值隨自變量的變大而變大或變小的性質.而這些研究結論是直觀地由圖象得到的.在函數的集合中,有很多函數具有這種性質,因此我們有必要對函數這種性質作更進一步的一般性的討論和研究,這就是我們今天這一節課的內容.
(點明本節課的內容,既是曾經有所認識的,又是新的知識,引起學生的注意.)
二、對概念的分析
(板書課題:)
師:請同學們打開課本第51頁,請××同學把增函數、減函數、單調區間的定義朗讀一遍.
(學生朗讀.)
師:好,請坐.通過剛才閱讀增函數和減函數的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個簡單的不等關系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數的單調遞增或單調遞減的性質.這就是數學的魅力!
(通過教師的情緒感染學生,激發學生學習數學的興趣.)
師:現在請同學們和我一起來看剛才的兩組圖中的第一個函數y=f1(x)和y=f2(x)的圖象,體會這種魅力.
(指圖說明.)
師:圖中y=f1(x)對于區間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區間[a,b]上是單調遞增的,區間[a,b]是函數y=f1(x)的單調增區間;而圖中y=f2(x)對于區間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區間[a,b]上是單調遞減的,區間[a,b]是函數y=f2(x)的單調減區間.
(教師指圖說明分析定義,使學生把函數單調性的定義與直觀圖象結合起來,使新舊知識融為一體,加深對概念的理解.滲透數形結合分析問題的數學思想方法.)
師:因此我們可以說,增函數就其本質而言是在相應區間上較大的自變量對應……
(不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.)
生:較大的函數值的函數.
師:那么減函數呢?
生:減函數就其本質而言是在相應區間上較大的自變量對應較小的函數值的函數.
(學生可能回答得不完整,教師應指導他說完整.)
師:好.我們剛剛以增函數和減函數的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應該抓住哪些關鍵詞語,才能更透徹地認識定義?
(學生思索.)
學生在高中階段以至在以后的學習中經常會遇到一些概念(或定義),能否抓住定義中的關鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數學及其他各學科的重要一環.因此教師應該教會學生如何深入理解一個概念,以培養學生分析問題,認識問題的能力.
(教師在學生思索過程中,再一次有感情地朗讀定義,并注意在關鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當的提示.)
生:我認為在定義中,有一個詞“給定區間”是定義中的關鍵詞語.
師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關鍵詞語,在學習幾個相近的概念時還要注意區別它們之間的不同.增函數和減函數都是對相應的區間而言的,離開了相應的區間就根本談不上函數的增減性.請大家思考一個問題,我們能否說一個函數在x=5時是遞增或遞減的?為什么?
生:不能.因為此時函數值是一個數.
師:對.函數在某一點,由于它的函數值是唯一確定的常數(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區間泛泛談論某一個函數是增函數或是減函數呢?你能否舉一個我們學過的例子?
生:不能.比如二次函數y=x2,在y軸左側它是減函數,在y軸右側它是增函數.因而我們不能說y=x2是增函數或是減函數.
(在學生回答問題時,教師板演函數y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區間”.這說明是函數在某一個區間上的性質,但這不排斥有些函數在其定義域內都是增函數或減函數.因此,今后我們在談論函數的增減性時必須指明相應的區間.
師:還有沒有其他的關鍵詞語?
生:還有定義中的“屬于這個區間的任意兩個”和“都有”也是關鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
(學生不一定能答全,教師應給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個自變量x1,x2必須取自給定的區間,不能從其他區間上取.
師:如果是閉區間的話,能否取自區間端點?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構造一個反例來說明“任意”呢?
(讓學生思考片刻.)
生:可以構造一個反例.考察函數y=x2,在區間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數,那就錯了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數或減函數.
師:好極了!通過分析定義和舉反例,我們知道要判斷函數y=f(x)在某個區間內是增函數或減函數,不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區間內任取兩個自變量x1,x2,根據它們的函數值f(x1)和f(x2)的大小來判定函數的增減性.
(教師通過一系列的設問,使學生處于積極的思維狀態,從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發散思維能力.)
師:反過來,如果我們已知f(x)在某個區間上是增函數或是減函數,那么,我們就可以通過自變量的大小去判定函數值的大小,也可以由函數值的大小去判定自變量的大小.即一般成立則特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關系.
(用辯證法的原理來解釋數學知識,同時用數學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內涵和外延,培養學生學習的能力.)
三、概念的應用
例1 圖4所示的是定義在閉區間[-5,5]上的函數f(x)的圖象,根據圖象說出f(x)的單調區間,并回答:在每一個單調區間上,f(x)是增函數還是減函數?
(用投影幻燈給出圖象.)
生甲:函數y=f(x)在區間[-5,-2],[1,3]上是減函數,因此[-5,-2],[1,3]是函數y=f(x)的單調減區間;在區間[-2,1],[3,5]上是增函數,因此[-2,1],[3,5]是函數y=f(x)的單調增區間.
生乙:我有一個問題,[-5,-2]是函數f(x)的單調減區間,那么,是否可認為(-5,-2)也是f(x)的單調減區間呢?
師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(增或減),則f(x)在(a,b)上單調(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數f(x)=3x+2在(-∞,+∞)上是增函數.
師:從函數圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數不易畫出圖象,因此必須學會根據解析式和定義從數量上分析辨認,這才是我們研究函數單調性的基本途徑.
(指出用定義證明的必要性.)
師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.
(教師巡視,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的大小關系感到無從入手,教師應給以啟發.)
師:對于f(x1)和f(x2)我們如何比較它們的大小呢?我們知道對兩個實數a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數的大小關系.
生:(板演)設x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數.
師:他的證明思路是清楚的.一開始設x1,x2是(-∞,+∞)內任意兩個自變量,并設x1<x2(邊說邊用彩色粉筆在相應的語句下劃線,并標注“①→設”),然后看f(x1)-f(x2),這一步是證明的關鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結論,我們把它稱之為第四步“下結論”(在相應位置標注“④→下結論”).
這就是我們用定義證明函數增減性的四個步驟,請同學們記住.需要指出的是第二步,如果函數y=f(x)在給定區間上恒大于零,也可以小.
(對學生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養成一定的思維習慣,形成一定的解題思路也是有幫助的.)
調函數嗎?并用定義證明你的結論.
師:你的結論是什么呢?
上都是減函數,因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數.
生乙:我有不同的意見,我認為這個函數不是整個定義域內的減函數,因為它不符合減函數的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內的減函數.
生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數.
域內的增函數,也不是定義域內的減函數,它在(-∞,0)和(0,+∞)每一個單調區間內都是減函數.因此在函數的幾個單調增(減)區間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區間.
上是減函數.
(教師巡視.對學生證明中出現的問題給予點拔.可依據學生的問題,給出下面的提示:
(1)分式問題化簡方法一般是通分.
(2)要說明三個代數式的`符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個負數的時候,不等號方向要改變.
對學生的解答進行簡單的分析小結,點出學生在證明過程中所出現的問題,引起全體學生的重視.)
四、課堂小結
師:請同學小結一下這節課的主要內容,有哪些是應該特別注意的?
(請一個思路清晰,善于表達的學生口述,教師可從中給予提示.)
生:這節課我們學習了函數單調性的定義,要特別注意定義中“給定區間”、“屬于”、“任意”、“都有”這幾個關鍵詞語;在寫單調區間時不要輕易用并集的符號連接;最后在用定義證明時,應該注意證明的四個步驟.
五、作業
1.課本P53練習第1,2,3,4題.
數.
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學設計說明
是函數的一個重要性質,是研究函數時經常要注意的一個性質.并且在比較幾個數的大小、對函數作定性分析、以及與其他知識的綜合應用上都有廣泛的應用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質.學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經學過的知識,感覺乏味.因此,在設計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設計過程中突出對概念的分析不僅僅是為了分析函數單調性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.
還有,使用函數單調性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現在提出要求,對今后的教學作一定的鋪墊.
冪函數教案2
一、教材分析
冪函數是學生在系統學習了指數函數、對數函數之后研究的又一類基本初等函數。是對函數概念及性質的應用,能進一步培養利用函數的性質(定義域、值域、圖像、奇偶性、單調性)研究一個函數的意識。因而本節課更是一個對學生研究函數的方法和能力的綜合提升。從概念到圖象( ),利用這五個函數的圖象探究其定義域、值域、奇偶性、單調性、公共點,概括、歸納冪函數的性質,培養學生從特殊到一般再到特殊的一般認知規律。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,以便能將該方法遷移到對其他函數的研究。
二、教學目標分析
依據課程標準,結合學生的認知發展水平和心理特征,確定本節課的教學目標如下:
[知識與技能] 使學生了解冪函數的定義,會畫常見冪函數的圖象,掌握冪函數的圖象和性質,初步學會運用冪函數解決問題,進一步體會數形結合的思想。
[過程與方法] 引入、剖析、定義冪函數的過程,啟動觀察、分析、抽象概括等思維活動,培養學生的思維能力,體會數學概念的學習方法;通過運用多媒體的教學手段,引領學生主動探索冪函數性質,體會學習數學規律的方法,體驗成功的樂趣;對冪函數的性質歸納、總結時培養學生抽象概括和識圖能力;運用性質解決問題時,進一步強化數形結合思想。
[情感、態度與價值觀] 通過生活實例引出冪函數概念,使學生體會生活中處處有數學,激發學生的學習興趣。通過本節課的學習,使學生進一步加深研究函數的規律和方法;提高學生的學習能力;養成積極主動,勇于探索,不斷創新的學習習慣和品質;樹立學科學,愛科學,用科學的精神。
三、重、難點分析
[教學重點]
(1)冪函數的定義與性質;
(2)指數α的變化對冪函數y=xα(α∈R)的影響。從知識體系看,前面有指數函數與對數函數的學習,后面有其他函數的研究,本節課的學習具有承上啟下的作用;就知識特點而言,蘊涵豐富的數學思想方法;就能力培養來說,通過學生對冪函數性質的歸納,可培養學生類比、歸納概括能力,運用數學語言交流表達的能力。
[教學難點]
(1)指數α的變化對冪函數y=xα(α∈R)性態的影響。
(2)數形結合解決大小比較以及求參數的問題。從學生認知發展看,他們具備一定的學習新函數的能力,可以通過學習指數函數與對數函數的方法來類比,但畢竟冪函數在三種初等函數中是最難的,因為它分類的情況很多,且性質多而復雜,我采用讓學生自己利用計算機作出函數的圖像,從中歸納性質的方法來突破難點。
四、學情與教法分析
1. 學情分析
從學生思維特點來和認知結構看,前面學生已經學習指數函數與對數函數,對新函數的學習已經有了一定的經驗。一方面可以把本節課與前面的指數函數與對數函數進行類比學習,但另一方面本節課分類情況多,性質歸納困難,尤其是三個函數放在一起可能產生混淆。對進入高中半個學期的學生來說,雖然具備一定的分析和解決問題的能力,邏輯思維也初步形成,但缺乏冷靜、深刻,思維具有片面性、不嚴謹的特點,對問題解決的一般性思維過程認識比較模糊。
2. 教法分析
學生思維活躍,求知欲強,但在思維習慣上還有待教師引導從學生原有的知識和能力出發,在教師的帶領下創設疑問,通過合作交流,共同探索,逐步解決問題。采用引導發現式的教學方法,充分利用多媒體輔助教學。通過教師點撥,啟發學生主動觀察、主動思考、動手操作、自主探究來達到對知識的發現和接受。
3.教學構想
新課標的要求是通過實例,了解y=x, , , , 的圖像,了解它們的變化情況。而原數學教學大綱要求掌握冪函數的概念及其圖像和性質,在考查掌握函數性質和運用性質解決問題時,所涉及的冪函數f(x)=xα中 α限于在集合{-2,-1,-,,,1,2,3}中取值。新課標無論從內容的容量和難度上都要遠低于舊課標。而蘇教版的教材嚴格按照新課標要求處理此部分內容,內容體系均未超出課標要求。所以我們應以新課標為準繩,控制難度與要求。由于本節課的難點在于指數α的變化對冪函數y=xα(α∈R)性態的影響,本身冪函數比較抽象,所以我采用在多媒體教室讓學生用Excel來模擬得到圖象,再從圖象上觀察、歸納函數的性質。從心理學上講,自己經歷知識的發生發展過程,印象更深刻,學生容易接受與理解。
五、教具準備
教師準備教科書、多媒體課件,在計算機教室。
六、教學過程
教學 環節 | 教學設計 | 設計 意圖 | |||
教學內容 | 教師活動 | 學生活動 | |||
? 問 題 情 景 1 | 我們知道:一定,?的變化而變化,我們建立了指數函數?一定,?的變化而變化,我們建立了對數函數?一定,?的變化而變化,是不是也應該可以確定一個函數呢? | 打開多媒體課件,帶領大家一起回顧前面的知識點。 | 在老師的引導下,展開思維分析。 | 知識點回顧,揭示函數之間的聯系,追求函數的完美,知識體系的完備性。 | |
? 問 題 情 景 2 | 問題1:如果張紅購買了每千克1元的蔬菜w千克,那么她需要付的錢數p = w元,這里p是w的函數。 問題2:如果正方形的邊長為a,那么正方形的面積S = a2,這里S是a的函數。 問題3:如果正方體的邊長為a,那么正方體的體積V = a3,這里V是a的函數。 問題4:如果正方形場地的面積為S,那么正方形的邊長a=S?km/s,這里v是t的函數。 | 引導學生觀察五個有關冪函數模型的生活實例,幫助學生歸納這些函數的共同特征。 | 由于是熟悉的背景,學生求函數的解析式還是輕松的,只是從中歸納函數的共同特點有點困難。 | 主要目的是引出五種典型的冪函數,為后面三大類冪函數的歸納總結打下基礎。提出日常生活中的問題,學生既容易理解,又可以增加學習的興趣。 | |
得出冪函數的定義 | 我們把形如:?是實常數。 ? 判斷下列函數那些是冪函數: ①y=x-2;②y=2x2;③y=(2x)0.5;④y=2x | 讓學生歸納總結,類比指數函數與冪函數,指出形式上的特點:①底數只能是自變量x,②x前系數只能為1。 | 觀察、分析,概括。在練習的過程中加深對概念的理解和形式的注意。 | 學生自主探究,培養學生的觀察、概括能力。 | |
建 構 數 學 | 例2、求下列函數的定義域,判斷它們的奇偶性。 (1) (3)利用Excel作出下列冪函數的圖象并觀察其特點。 (1)y=x (2)? (3) | 在前面例1的基礎上利用函數的定義域,列出數據,先用計算機模擬畫出圖象示范給學生看,讓學生自己動手操作,一邊巡視一邊指導。 同時引導學生觀察、思考填寫表格。啟發學生類比前面研究指數和對數函數的方法,從特殊到一般,歸納總結冪函數的性質。 | 學生自己跟著老師的步驟操作,利用計算機作出五種典型函數的圖象,讓學生觀察和分析所作的圖象,歸納得出圖象特征,并由圖象特征得到相應的函數性質。經歷知識發生過程,性質的歸納不斷由學生補充,修改和完善,學會數學語言的運用與交流,體會合作學習的快樂與成功帶來的成就感。 | 預見到學生對抽象的冪函數理解比較困難,所以讓學生親身經歷知識的發生發展過程,印象更加深刻。在歸納總結的過程中,培養學生研究新函數從特殊到一般,類比聯想的數學方法;積累學生獨立思考與互相合作學習的經驗。 | |
歸 ? 納 ? 概 ? 括 | ? | ||||
冪函數教案3
一、教學內容分析
教材地位:冪函數是中學教材中的一個基本內容,即是對正比例函數、反比例函數、二次函數的系統總結,也是對這些函數的概況和一般化、
教學重點:冪函數的圖像與性質、
教學難點:以冪函數為背景的圖像變換、
二、教學目標設計
能描繪常見冪函數的圖像,掌握冪函數的基本性質;理解冪函數圖像的演進及單調性質;理解冪函數圖形特征與代數特征的對稱聯系,在函數性質的應用中體會它的價值。能以冪函數為背景進行基本的函數圖像的平移和對稱變換、
三、教學流程設計
設置情境→探索研究→總結提煉
→嘗試應用→練習回饋→設置評價
五、教學過程設計
1、情境設置
指導學生描畫一些典型的冪函數的圖像,回憶并歸納冪函數的性質、
2、探索研究
問題:如圖所示的分別是冪函數①,②,③,④,⑤,⑥,⑦在坐標系中第一象限內的圖像,請盡可能精確地將指數的范圍分別確定出來
3、總結提煉
揭示冪函數圖像特征與底數的依賴關系、師生共同整理出規律性結論、
4、嘗試應用
①(1)研究函數的圖像之間的關系;
(2)在同一坐標中作上述函數的圖像;
(3)由所作函數的圖像判斷最后一個函數的奇偶性、單調性、
②已知函數
(1)試求該函數的零點,并作出圖像;
(2)是否存在自然數,使=1000,若存在,求出;若不存在,請說明理由、
③作函數的大致圖像、
5、練習回饋
課本第83頁練習4、1(2)
六、教學評價設計
習題4、1——
B組(根據學生具體情況選用)
冪函數教案4
教學目標
1、使學生掌握的概念,圖象和性質。
(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域。
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質。
(3)x能利用的性質比較某些冪形數的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法。
3、通過對的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣。使學生善于從現實生活中數學的發現問題,解決問題。
教學建議
教材分析
(1)x是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究。
(2)x本節的教學重點是在理解定義的基礎上掌握的圖象和性質。難點是對底數x在x和x時,函數值變化情況的區分。
(3)是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究。
教法建議
(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
(2)對底數x的限制條件的理解與認識也是認識的重要內容。如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來。
關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
教學設計示例
課題
教學目標
1。x理解的定義,初步掌握的圖象,性質及其簡單應用。
2。x通過的圖象和性質的學習,培養學生觀察,分析,歸納的能力,進一步體會數形結合的思想方法。
3。x通過對的研究,使學生能把握函數研究的基本方法,激發學生的學習興趣。
教學重點和難點
重點是理解的定義,把握圖象和性質。
難點是認識底數對函數值影響的認識。
教學用具
投影儀
教學方法
啟發討論研究式
教學過程
一、x引入新課
我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的常見函數。
1、6、(板書)
這類函數之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個……一個這樣的細胞分裂x次后,得到的細胞分裂的個數x與x之間,構成一個函數關系,能寫出x與x之間的函數關系式嗎?
由學生回答:x與x之間的關系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數關系。
由學生回答:x。
在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區別,從形式上冪的形式,且自變量x均在指數的位置上,那么就把形如這樣的函數稱為。
x的概念(板書)
1、定義:形如x的函數稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)
(1)x關于對x的規定:
教師首先提出問題:為什么要規定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數范圍內相應的函數值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發生,所以規定x且x。
(2)關于的定義域x(板書)
教師引導學生回顧指數范圍,發現指數可以取有理數。此時教師可指出,其實當指數為無理數時,x也是一個確定的實數,對于無理指數冪,學過的有理指數冪的"性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應用價值。
(3)關于是否是的判斷(板書)
剛才分別認識了中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是,請看下面函數是否是。
(4)x,x
(5)x。
學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。
3、歸納性質
作圖的用什么方法。用列表描點發現,教師準備明確性質,再由學生回答。
函數
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數也不是偶函數
4、截距:在x軸上沒有,在x軸上為1。
對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數圖象畫圖的依據。(圖象位于x軸上方,且與x軸不相交。)
在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故x的值應有正有負,且由于單調性不清,所取點的個數不能太少。
此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據。連點成線時,一定提醒學生圖象的變化趨勢(當x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(板書)
1、圖象的畫法:性質指導下的列表描點法。
2、草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且x,取值可分為兩段)讓學生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關于x軸對稱,而此時x的圖象已經有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到x的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個x的表,將相應的內容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質。
3、性質。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
(2)x時,x在定義域內為增函數,x時,x為減函數。
(3)x時,x,x x時,x。
總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質。
三、簡單應用x (板書)
1、利用單調性比大小。x(板書)
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數的大小
(1)x與x;x(2)x與x;
(3)x與1x。(板書)
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同。再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數,且 教師最后再強調過程必須寫清三句話: (1)x構造函數并指明函數的單調區間及相應的單調性。 (2)x自變量的大小比較。 (3)x函數值的大小比較。 后兩個題的過程略。要求學生仿照第(1)題敘述過程。 例2。比較下列各組數的大小 (1)x與x;x(2)x與x ; (3)x與x。(板書) 先讓學生觀察例2中各組數與例1中的區別,再思考解決的方法。引導學生發現對(1)來說x可以寫成x,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數值與1有關,可以用1來起橋梁作用) 最后由學生說出x>1,<1。 解決后由教師小結比較大小的方法 (1)x構造函數的方法:x數的特征是同底不同指(包括可轉化為同底的) (2)x搭橋比較法:x用特殊的數1或0。 四、鞏固練習 練習:比較下列各組數的大小(板書) (1)x與x x(2)x與x; (3)x與x;x(4)x與x。解答過程略 五、小結 1、的概念 2、的圖象和性質 3、簡單應用 六、板書設計 教學目標: 1.使學生理解冪函數的概念,能夠通過圖象研究冪函數的性質; 2.在作冪函數的圖象及研究冪函數的性質過程中,培養學生的觀察能力,概括總結的能力; 3.通過對冪函數的研究,培養學生分析問題的能力. 教學重點: 常見冪函數的概念、圖象和性質; 教學難點: 冪函數的單調性及其應用. 教學方法: 采用師生互動的方式,由學生自我探索、自我分析,合作學習,充分發揮學生的積極性與主動性,教師利用實物投影儀及計算機輔助教學. 教學過程: 一、問題情境 情境:我們以前學過這樣的函數:=x,=x2,=x1,試作出它們的圖象,并觀察其性質. 問題:這些函數有什么共同特征?它們是指數函數嗎? 二、數學建構 1.冪函數的定義:一般的我們把形如=x(R)的函數稱為冪函數,其中底數x是變量,指數是常數. 2.冪函數=x 圖象的分布與 的關系: 對任意的 R,=x在第I象限中必有圖象; 若=x為偶函數,則=x在第II象限中必有圖象; 若=x為奇函數,則=x在第III象限中必有圖象; 對任意的 R,=x的圖象都不會出現在第VI象限中. 3.冪函數的性質(僅限于在第一象限內的圖象): (1)定點:>0時,圖象過(0,0)和(1,1)兩個定點; ≤0時,圖象過只過定點(1,1). (2)單調性:>0時,在區間[0,+)上是單調遞增; <0時,在區間(0,+)上是單調遞減. 三、數學運用 例1 寫出下列函數的定義域,并判斷它們的奇偶性 (1)= ; (2)= ;(3)= ;(4)= . 例2 比較下列各題中兩個值的大小. (1)1.50.5與1.70.5 (2)3.141與π1 (3)(-1.25)3與(-1.26)3(4)3 與2 例3 冪函數=x;=xn;=x1與=x在第一象限內圖象的排列順序如圖所示,試判斷實數,n與常數-1,0,1的大小關系. 練習:(1)下列函數:①=0.2x;②=x0.2; ③=x3;④=3x2.其中是冪函數的有 (寫出所有冪函數的序號). (2)函數 的定義域是 . (3)已知函數 ,當a= 時,f(x)為正比例函數; 當a= 時,f(x)為反比例函數;當a= 時,f(x)為二次函數; 當a= 時,f(x)為冪函數. (4)若a= ,b= ,c= ,則a,b,c三個數按從小到大的順序排列為 . 四、要點歸納與方法小結 1.冪函數的概念、圖象和性質; 2.冪值的大小比較方法. 五、作業 課本P90-2,4,6. 【冪函數教案】相關文章: 冪函數的定義域和值域10-12 大班安全教案區域教案03-31 將進酒教案優秀教案08-27 中班音樂教案大吊車教案04-06 中班健康教案打怪獸教案04-06 中班音樂教案開汽車教案04-06 小班游戲教案飛機格教案04-06 小班游戲教案圈圈樂教案04-06 小班游戲教案開飛機教案04-06 中班游戲教案走迷宮教案04-02冪函數教案5