高一數學教案

時間:2023-01-05 12:28:46 教案 我要投稿
  • 相關推薦

高一數學教案集錦15篇

  作為一名優秀的教育工作者,時常需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。那么什么樣的教案才是好的呢?下面是小編收集整理的高一數學教案,歡迎閱讀與收藏。

高一數學教案集錦15篇

高一數學教案1

  教材分析:冪函數作為一類重要的函數模型,是學生在系統地學習了指數函數、對數函數之后研究的又一類基本的初等函數。本課的教學重點是掌握常見冪函數的概念和性質,難點是根據冪函數的單調性比較兩個同指數的指數式的大小。 冪函數模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數 。

  組織學生畫出他們的圖象,根據圖象觀察、總結這幾個常見冪函數的性質。對于冪函數,只需重點掌握 這五個函數的圖象和性質。 學習中學生容易將冪函數和指數函數混淆,因此在引出冪函數的概念之后,可以組織學生對兩類不同函數的表達式進行辨析。

  學生已經有了學習冪函數和對象函數的學習經歷,這為學習冪函數做好了方法上的準備。因此,學習過程中,引入冪函數的概念之后,嘗試放手讓學生自己進行合作探究學習。

  教學目標:

  ㈠知識和技能

  1、了解冪函數的概念,會畫冪函數 ,的圖象,并能結合這幾個冪函數的圖象,了解冪函數圖象的變化情況和性質。

  2、了解幾個常見的冪函數的性質。

  ㈡過程與方法

  1、通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。

  2、使學生進一步體會數形結合的思想。

  ㈢情感、態度與價值觀

  1、通過生活實例引出冪函數的概念,使學生體會到生活中處處有數學,激發學生的學習興趣。

  2、利用計算機等工具,了解冪函數和指數函數的本質差別,使學生充分認識到現代技術在人們認識世界的過程中的作用,從而激發學生的學習欲望。 教學重點 常見冪函數的概念和性質 教學難點 冪函數的單調性與冪指數的關系

  教學過程

  一、創設情景,引入新課

  問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關系? (總結:根據函數的定義可知,這里p是w的函數)

  問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數。

  問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數。

  問題4:如果正方形場地面積為S,那么正方形的邊長xx,這里a是S的函數

  問題5:如果某人xxs內騎車行進了xxkm,那么他騎車的速度,這里v是t的函數。

  以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函數解析式有什么共同點嗎?(右邊指數式,且底數都是變量)這只是我們生活中常用到的一類函數的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)

  二、新課講解

  (一)冪函數的概念如果設變量為,函數值為xx,你能根據以上的生活實例得到怎樣的一些具體的函數式?這里所得到的函數是冪函數的幾個典型代表,你能根據此給出冪函數的一般式嗎?這就是冪函數的一般式,你能根據指數函數、對數函數的定義,給出冪函數的定義嗎?xx冪函數的定義:一般地,我們把形如xx的函數稱為冪函數(power function),其中xx是自變量,xx是常數。

  【探究一】冪函數與指數函數有什么區別?(組織學生回顧指數函數的概念)

  結論:冪函數和指數函數都是我們高中數學中研究的兩類重要的基本初等函數,從它們的解析式看有如下區別:對冪函數來說,底數是自變量,指數是常數對指數函數來說,指數是自變量,底數是常數

  試一試:判斷下列函數那些是冪函數(1)(2)(3)(4)我們已經對冪函數的概念有了比較深刻的認識,根據我們前面學習指數函數、對數函數的學習經歷,你認為我們下面應該研究什么呢?(研究圖象和性質)

  (二)幾個常見冪函數的圖象和性質 在初中我們已經學習了冪函數x的圖象和性質,請同學們在同一坐標系中畫出它們的圖象。根據你的學習經歷,你能在同一坐標系內畫出函數x的圖象嗎?

  【探究二】觀察函數x的圖象,將你發現的結論寫在下表內。定義域,值域,奇偶性,單調性,定點,圖象范圍

  【探究三】根據上表的內容并結合圖象,試總結函數:x的共同性質。

  (1)函數x的圖象都過點

  (2)函數x在x上單調遞增;

  歸納:冪函數x圖象的基本特征是,當x是,圖象過點x,且在第一象限隨x的增大而上升,函數在區間x上是單調增函數。(演示幾何畫板制作課件:冪函數。asp)

  請同學們模仿我們探究冪函數x圖象的基本特征x的情況探討x時冪函數x圖象的基本特征。(利用drawtools軟件作圖研究)

  歸納:xx時冪函數x圖象的基本特征:過點x,且在第一象限隨x的增大而下降,函數在區間x上是單調減函數,且向右無限接近X軸,向上無限接近Y軸。

  (三)例題剖析

  【例1】求下列冪函數的定義域,并指出其奇偶性、單調性。(1) (2) (3)

  分析:根據你的學習經歷,你覺得求一個函數的定義域應該從哪些方面來考慮?

  方法引導:解決有關函數求定義域的問題時,可以從以下幾個方面來考慮,列出相應不等式或不等式組,解不等式或不等式組即可得到所求函數的定義域。

  (1)若函數解析式中含有分母,分母不能為0;

  (2)若函數解析式中含有根號,要注意偶次根號下非負;

  (3)0的0次冪沒有意義;

  (4)若函數解析式中含有對數式,要注意對數的真數大于0;求函數的定義域的本質是解不等式或不等式組。

  結論:在函數解析式中含有分數指數時,可以把它們的解析式化成根式,根據“偶次根號下非負”這一條件來求出對應函數的定義域;當函數解析式的冪指數為負數時,根據負指數冪的意義將其轉化為分式形式,根據分式的分母不能為0這一限制條件來求出對應函數的定義域。歸納分析如果判斷冪函數的單調性(第一象限利用性質,其余象限利用函數奇偶性與單調性的關系)

  【例2】比較下列各組數中兩個值的大小(在橫線上填上“<”或“>”)

  (1)________

  (2)________

  (3)__________

  (4)____________

  分析:利用考察其相對應的冪函數和指數函數來比較大小

  三、課堂小結

  1、冪函數的概念及其指數函數表達式的區別

  2、常見冪函數的圖象和冪函數的性質。

  四、布置作業

  ㈠課本第73頁習題2.4

  第1、2、3題

  ㈡思考題:根據下列條件對于冪函數x的有關性質的敘述,分別指出冪函數x的圖象具有下列特點之一時的x的值,其中:

  (1)圖象過原點,且隨x的增大而上升;

  (2)圖象不過原點,不與坐標軸相交,且隨x的增大而下降;

  (3)圖象關于x軸對稱,且與坐標軸相交;

  (4)圖象關于x軸對稱,但不與坐標軸相交;

  (5)圖象關于原點對稱,且過原點;

  (6)圖象關于原點對稱,但不過原點;

  檢測與反饋

  1、下列函數中,是冪函數的是( )

  A、 B、 C、 D、

  2、下列結論正確的是( )

  A、冪函數的圖象一定過原點

  B、當xx時,冪函數x是減函數

  C、當xx時,冪函數x是增函數

  D、函數 既是二次函數,也是冪函數

  3、下列函數中,在 是增函數的是( )

  A、 B、 C、 D、

  4、函數 的圖象大致是( )

  5、已知某冪函數的圖象經過點 ,則這個函數的解析式為_______________________

  6、寫出下列函數的定義域,并指出它們的單調性:

  同伴評 (優、良、中、須努力)

  自 評 (優、良、中、須努力)

  教師評 (優、良、中、須努力)

高一數學教案2

  教材:邏輯聯結詞

  目的:要求學生了解復合命題的意義,并能指出一個復合命題是有哪些簡單命題與邏輯聯結詞,并能由簡單命題構成含有邏輯聯結詞的復合命題。

  過程

  一、提出課題:簡單邏輯、邏輯聯結詞

  二、命題的概念:

  例:125 ① 3是12的約數 ② 0.5是整數 ③

  定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。

  如:①②是真命題,③是假命題

  反例:3是12的約數嗎? x5 都不是命題

  不涉及真假(問題) 無法判斷真假

  上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。

  三、復合命題:

  1.定義:由簡單命題再加上一些邏輯聯結詞構成的命題叫復合命題。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的對角線互相 菱形的對角線互相垂直且菱形的

  垂直且平分⑤ 對角線互相平分

  (3)0.5非整數⑥ 非0.5是整數

  觀察:形成概念:簡單命題在加上或且非這些邏輯聯結詞成復合命題。

  3.其實,有些概念前面已遇到過

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、復合命題的構成形式

  如果用 p, q, r, s表示命題,則復合命題的形式接觸過的有以下三種:

  即: p或q (如 ④) 記作 pq

  p且q (如 ⑤) 記作 pq

  非p (命題的否定) (如 ⑥) 記作 p

  小結:1.命題 2.復合命題 3.復合命題的構成形式

高一數學教案3

  [教學重、難點]

  認識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。

  [教學準備]

  學生、老師剪下附頁2中的圖2。

  [教學過程]

  一、畫一畫,說一說

  1、學生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。

  2、教師巡查練習情況。

  3、學生展示練習,說一說為什么是銳角、直角、鈍角?

  二、分一分

  1、小組活動;把附頁2中的圖2中的三角形進行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?

  2、匯報:分類的標準和方法。可以按角來分,可以按邊來分。

  二、按角分類:

  1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。

  2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的三角形是直角三角形

  3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的三角形是鈍角三角形。

  三、按邊分類:

  1、觀察這類三角形的邊有什么共同的特點,引導學生發現每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。

  2、引導學生發現有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?

  四、填一填:

  24、25頁讓學生辨認各種三角形。

  五、練一練:

  第1題:通過“猜三角形游戲”讓學生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。

  第2題:在點子圖上畫三角形第3題:剪一剪。

  六、完成26頁實踐活動。

高一數學教案4

  【摘要】鑒于大家對數學網十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數學教案,供大家參考!

  本文題目:空間幾何體的三視圖和直觀圖高一數學教案

  第一課時 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖

  教學要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.

  教學重點:畫出三視圖、識別三視圖.

  教學難點:識別三視圖所表示的空間幾何體.

  教學過程:

  一、新課導入:

  1. 討論:能否熟練畫出上節所學習的幾何體?工程師如何制作工程設計圖紙?

  2. 引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.

  三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;

  直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形.

  用途:工程建設、機械制造、日常生活.

  二、講授新課:

  1. 教學中心投影與平行投影:

  ① 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產生影子。人們將這種自然現象加以科學的抽象,總結其中的規律,提出了投影的方法。

  ② 中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形.

  ③ 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.

  討論:點、線、三角形在平行投影后的結果.

  2. 教學柱、錐、臺、球的三視圖:

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖

  討論:三視圖與平面圖形的關系? 畫出長方體的三視圖,并討論所反應的長、寬、高

  結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果. 正視圖、側視圖、俯視圖.

  ③ 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖. (

  ④ 討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數量(長、寬、高)

  正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

  ⑤ 討論:根據以上的三視圖,如何逆向得到幾何體的形狀.

  (試變化以上的三視圖,說出相應幾何體的擺放)

  3. 教學簡單組合體的三視圖:

  ① 畫出教材P16 圖(2)、(3)、(4)的三視圖.

  ② 從教材P16思考中三視圖,說出幾何體.

  4. 練習:

  ① 畫出正四棱錐的三視圖.

  畫出右圖所示幾何體的三視圖.

  ③ 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

  5. 小結:投影法;三視圖;順與逆

  三、鞏固練習: 練習:教材P17 1、2、3、4

  第二課時 1.2.3 空間幾何體的直觀圖

  教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.

  教學重點:畫出直觀圖.

高一數學教案5

  學習目標 1.函數奇偶性的概念

  2.由函數圖象研究函數的奇偶性

  3.函數奇偶性的判斷

  重點:能運用函數奇偶性的定義判斷函數的奇偶性

  難點:理解函數的奇偶性

  知識梳理:

  1.軸對稱圖形:

  2中心對稱圖形:

  【概念探究】

  1、 畫出函數 ,與 的圖像;并觀察兩個函數圖像的對稱性。

  2、 求出 , 時的函數值,寫出 , 。

  結論: 。

  3、 奇函數:___________________________________________________

  4、 偶函數:______________________________________________________

  【概念深化】

  (1)、強調定義中任意二字,奇偶性是函數在定義域上的整體性質。

  (2)、奇函數偶函數的定義域關于原點對稱。

  5、奇函數與偶函數圖像的對稱性:

  如果一個函數是奇函數,則這個函數的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數是___________。

  如果一個函數是偶函數,則這個函數的圖像是以 軸為對稱軸的__________。反之,如果一個函數的圖像是關于 軸對稱,則這個函數是___________。

  6. 根據函數的奇偶性,函數可以分為____________________________________.

  題型一:判定函數的奇偶性。

  例1、判斷下列函數的奇偶性:

  (1) (2) (3)

  (4) (5)

  練習:教材第49頁,練習A第1題

  總結:根據例題,你能給出用定義判斷函數奇偶性的步驟?

  題型二:利用奇偶性求函數解析式

  例2:若f(x)是定義在R上的奇函數,當x0時,f(x)=x(1-x),求當 時f(x)的解析式。

  練習:若f(x)是定義在R上的奇函數,當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。

  已知定義在實數集 上的奇函數 滿足:當x0時, ,求 的表達式

  題型三:利用奇偶性作函數圖像

  例3 研究函數 的性質并作出它的圖像

  練習:教材第49練習A第3,4,5題,練習B第1,2題

  當堂檢測

  1 已知 是定義在R上的奇函數,則( D )

  A. B. C. D.

  2 如果偶函數 在區間 上是減函數,且最大值為7,那么 在區間 上是( B )

  A. 增函數且最小值為-7 B. 增函數且最大值為7

  C. 減函數且最小值為-7 D. 減函數且最大值為7

  3 函數 是定義在區間 上的偶函數,且 ,則下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函數 為奇函數,若 ,則 -1

  5 若 是偶函數,則 的單調增區間是

  6 下列函數中不是偶函數的是(D )

  A B C D

  7 設f(x)是R上的偶函數,切在 上單調遞減,則f(-2),f(- ),f(3)的大小關系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函數 的圖像必經過點( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函數 為偶函數,其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )

  A 0 B 1 C 2 D 4

  10 設f(x)是定義在R上的奇函數,且x0時,f(x)= ,則f(-2)=_-5__

  11若f(x)在 上是奇函數,且f(3)_f(-1)

  12.解答題

  用定義判斷函數 的奇偶性。

  13定義證明函數的奇偶性

  已知函數 在區間D上是奇函數,函數 在區間D上是偶函數,求證: 是奇函數

  14利用函數的奇偶性求函數的解析式:

  已知分段函數 是奇函數,當 時的解析式為 ,求這個函數在區間 上的解析表達式。

高一數學教案6

  知識結構

  重難點分析

  本節的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.

  本節的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.

  教法建議

  1.性質的引入方法很多,以下2種比較常用:

  (1)設計問題引導啟發:由設計的問題

  1)、、各等于什么?

  2)、、各等于什么?

  啟發、引導學生猜想出

  (2)從算術平方根的意義引入.

  2.性質的鞏固有兩個方面需要注意:

  (1)注意與性質進行對比,可出幾道類型不同的題進行比較;

  (2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.

  (第1課時)

  一、教學目標

  1.掌握二次根式的性質

  2.能夠利用二次根式的性質化簡二次根式

  3.通過本節的學習滲透分類討論的數學思想和方法

  二、教學設計

  對比、歸納、總結

  三、重點和難點

  1.重點:理解并掌握二次根式的性質

  2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.

  四、課時安排

  1課時

  五、教B具學具準備

  投影儀、膠片、多媒體

  六、師生互動活動設計

  復習對比,歸納整理,應用提高,以學生活動為主

  七、教學過程

  一、導入新課

  我們知道,式子()表示非負數的算術平方根.

  問:式子的意義是什么?被開方數中的表示的是什么數?

  答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.

  二、新課

  計算下列各題,并回答以下問題:

  (1);(2);(3);

  1.各小題中被開方數的冪的底數都是什么數?

  2.各小題的結果和相應的被開方數的冪的底數有什么關系?

  3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.

高一數學教案7

  學習是一個潛移默化、厚積薄發的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!

  教學目標

  1.使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項.

  (1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的.

  (2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式.

  (3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項.

  2.通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力.

  3.通過由求的過程,培養學生嚴謹的科學態度及良好的思維習慣.

  教學建議

  (1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等.

  (2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系.在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列.函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法.由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法.

  (3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.

  (4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用來調整等.如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系.

  (5)對每個數列都有求和問題,所以在本節課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.

  (6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的.

  上述提供的高一數學教案:數列希望能夠符合大家的實際需要!

高一數學教案8

  一、教材分析

  1、 教材的地位和作用:

  函數是數學中最主要的概念之一,而函數概念貫穿在中學數學的始終,概念是數學的基礎,概念性強是函數理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中對函數概念理解的程度會直接影響其它知識的學習,所以函數的第一課時非常的重要。

  2、 教學目標及確立的依據:

  教學目標:

  (1) 教學知識目標:了解對應和映射概念、理解函數的近代定義、函數三要素,以及對函數抽象符號的理解。

  (2) 能力訓練目標:通過教學培養的抽象概括能力、邏輯思維能力。

  (3) 德育滲透目標:使懂得一切事物都是在不斷變化、相互聯系和相互制約的辯證唯物主義觀點。

  教學目標確立的依據:

  函數是數學中最主要的概念之一,而函數概念貫穿整個中學數學,如:數、式、方程、函數、排列組合、數列極限等都是以函數為中心的代數。加強函數教學可幫助學好其他的內容。而掌握好函數的概念是學好函數的基石。

  3、教學重點難點及確立的依據:

  教學重點:映射的概念,函數的近代概念、函數的三要素及函數符號的理解。

  教學難點:映射的概念,函數近代概念,及函數符號的理解。

  重點難點確立的依據:

  映射的概念和函數的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數在高考中可以以低、中、高擋題出現,所以近年來有一種“函數熱”的趨勢,所以本節的重點難點必然落在映射的概念和函數的近代定義及函數符號的理解與運用上。

  二、教材的處理:

  將映射的定義及類比手法的運用作為本課突破難點的關鍵。 函數的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數概念的理解帶來更大的困難。為解決這難點,主要是從實際出發調動學生的學習熱情與參與意識,運用引導對比的手法,啟發引導學生進行有目的的反復比較幾個概念的異同,使真正對函數的概念有很準確的認識。

  三、教學方法和學法

  教學方法:講授為主,自主預習為輔。

  依據是:因為以新的觀點認識函數概念及函數符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數的概念及符號的運用在學生的思想和知識結構中打上深刻的烙印,為能學好后面的知識打下堅實的基礎。

  學法:四、教學程序

  一、課程導入

  通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯系在一起。

  例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯系在一起?

  二. 新課講授:

  (1) 接著再通過幻燈片給出六組學生熟悉的`數集的對應關系引導學生歸納它們的共同性質(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應法則 f。進一步引導判斷一個從a到b的對應是否為映射的關鍵是看a中的任意一個元素通過對應法則f在b中是否有唯一確定的元素與之對應。

  (2)鞏固練習課本52頁第八題。

  此練習能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。

  例1. 給出學生初中學過的函數的傳統定義和幾個簡單的一次、二次函數,通過畫圖表示這些函數的對應關系,引導發現它們是特殊的映射進而給出函數的近代定義(設a、b是兩個非空集合,如果按照某種對應法則f,使得a中的任何一個元素在集合b中都有唯一的元素與之對應則這樣的對應叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{ f(x):x∈a}叫做函數的值域。

  并把函數的近代定義與映射定義比較使認識到函數與映射的區別與聯系。(函數是非空數集到非空數集的映射)。

  再以讓判斷的方式給出以下關于函數近代定義的注意事項:2. 函數是非空數集到非空數集的映射。

  3. f表示對應關系,在不同的函數中f的具體含義不一樣。

  4. f(x)是一個符號,不表示f與x的乘積,而表示x經過f作用后的結果。

  5. 集合a中的數的任意性,集合b中數的唯一性。

  66. “f:a→b”表示一個函數有三要素:法則f(是核心),定義域a(要優先),值域c(上函數值的集合且c∈b)。

  三.講解例題

  例1.問y=1(x∈a)是不是函數?

  解:y=1可以化為y=0*x+1

  畫圖可以知道從x的取值范圍到y的取值范圍的對應是“多對一”是從非空數集到非空數集的映射,所以它是函數。

  [注]:引導從集合,映射的觀點認識函數的定義。

  四.課時小結:

  1. 映射的定義。

  2. 函數的近代定義。

  3. 函數的三要素及符號的正確理解和應用。

  4. 函數近代定義的五大注意點。

  五.課后作業及板書設計

  書本p51 習題2.1的1、2寫在書上3、4、5上交。

  預習函數三要素的定義域,并能求簡單函數的定義域。

  函數(一)

  一、映射:

  2.函數近代定義: 例題練習

  二、函數的定義 [注]1—5

  1.函數傳統定義

  三、作業:

高一數學教案9

  教材分析:函數是描述客觀世界變化規律的重要數學模型.高中階段不僅把函數看成變量之間的依賴關系,同時還用集合與對應的語言刻畫函數,高中階段更注重函數模型化的思想.

  教學目的:

  (1)通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;

  (2)了解構成函數的要素;

  (3)會求一些簡單函數的定義域和值域;

  (4)能夠正確使用“區間”的符號表示某些函數的定義域;

  教學重點:理解函數的模型化思想,用合與對應的語言來刻畫函數;

  教學難點:符號“y=f(x)”的含義,函數定義域和值域的區間表示;

  教學過程:

  一、引入課題

  1.復習初中所學函數的概念,強調函數的模型化思想;

  2.閱讀課本引例,體會函數是描述客觀事物變化規律的數學模型的思想:

  (1)炮彈的射高與時間的變化關系問題;

  (2)南極臭氧空洞面積與時間的變化關系問題;

  (3)“八五”計劃以來我國城鎮居民的恩格爾系數與時間的變化關系問題

  備用實例:

  我國xxxx年4月份非典疫情統計:

  日期222324252627282930

  新增確診病例數1061058910311312698152101

  3.引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;

  4.根據初中所學函數的概念,判斷各個實例中的兩個變量間的關系是否是函數關系.

  二、新課教學

  (一)函數的有關概念

  1.函數的概念:

  設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域(range).

  注意:

  ○1“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

  ○2函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.

  2.構成函數的三要素:

  定義域、對應關系和值域

  3.區間的概念

  (1)區間的分類:開區間、閉區間、半開半閉區間;

  (2)無窮區間;

  (3)區間的數軸表示.

  4.一次函數、二次函數、反比例函數的定義域和值域討論

  (由學生完成,師生共同分析講評)

  (二)典型例題

  1.求函數定義域

  課本P20例1

  解:(略)

  說明:

  ○1函數的定義域通常由問題的實際背景確定,如果課前三個實例;

  ○2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;

  ○3函數的定義域、值域要寫成集合或區間的形式.

  鞏固練習:課本P22第1題

  2.判斷兩個函數是否為同一函數

  課本P21例2

  解:(略)

  說明:

  ○1構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)

  ○2兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。

  鞏固練習:

  ○1課本P22第2題

  ○2判斷下列函數f(x)與g(x)是否表示同一個函數,說明理由?

  (1)f(x)=(x-1)0;g(x)=1

  (2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

  (三)課堂練習

  求下列函數的定義域

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  三、歸納小結,強化思想

  從具體實例引入了函數的的概念,用集合與對應的語言描述了函數的定義及其相關概念,介紹了求函數定義域和判斷同一函數的典型題目,引入了區間的概念來表示集合。

  四、作業布置

  課本P28習題1.2(A組)第1—7題(B組)第1題

高一數學教案10

  一、教學目標

  知識與技能:

  理解任意角的概念(包括正角、負角、零角)與區間角的概念。

  過程與方法:

  會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區間角的集合的書寫。

  情感態度與價值觀:

  1、提高學生的推理能力;

  2、培養學生應用意識。

  二、教學重點、難點:

  教學重點:

  任意角概念的理解;區間角的集合的書寫。

  教學難點:

  終邊相同角的集合的表示;區間角的集合的書寫。

  三、教學過程

  (一)導入新課

  1、回顧角的定義

  ①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。

  ②角的第二種定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。

  (二)教學新課

  1、角的有關概念:

  ①角的定義:

  角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。

  ②角的名稱:

  注意:

  ⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

  ⑵零角的終邊與始邊重合,如果α是零角α =0°;

  ⑶角的概念經過推廣后,已包括正角、負角和零角。

  ⑤練習:請說出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

高一數學教案11

  1.1 集合含義及其表示

  教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。

  教學過程:

  一、閱讀下列語句:

  1) 全體自然數0,1,2,3,4,5,

  2) 代數式 .

  3) 拋物線 上所有的點

  4) 今年本校高一(1)(或(2))班的全體學生

  5) 本校實驗室的所有天平

  6) 本班級全體高個子同學

  7) 著名的科學家

  上述每組語句所描述的對象是否是確定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的個數分,可分為1)__________2)_________

  三、集合中元素的三個性質:

  1)___________2)___________3)_____________

  四、元素與集合的關系:1)____________2)____________

  五、特殊數集專用記號:

  1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______

  4)有理數集______5)實數集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例題講解:

  例1、 中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是 ( )

  A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形

  例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?

  1)地球上的四大洋構成的集合;

  2)函數 的全體 值的集合;

  3)函數 的全體自變量 的集合;

  4)方程組 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇數組成的集合;

  8)所有正偶數組成的集合;

  例3、用符號 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)設 , , 則

  例4、用列舉法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的數

  2.圖中陰影部分點(含邊界)的坐標的集合

  課堂練習:

  例6、設含有三個實數的集合既可以表示為 ,也可以表示為 ,則 的值等于___________

  例7、已知: ,若 中元素至多只有一個,求 的取值范圍。

  思考題:數集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。

  小結:

  作業 班級 姓名 學號

  1. 下列集合中,表示同一個集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .則 ( )

  A . B. C. D.

  3. 方程組 的解集是____________________.

  4. 在(1)難解的題目,(2)方程 在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.

  5. 設集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的個數是____________.

  6. 設 ,則集合 中所有元素的和為

  7. 設x,y,z都是非零實數,則用列舉法將 所有可能的值組成的集合表示為

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,試用列舉法表示集合B=

  9. 把下列集合用另一種方法表示出來:

  (1) (2)

  (3) (4)

  10. 設a,b為整數,把形如a+b 的一切數構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說明理由。

  11. 已知集合A=

  (1) 若A中只有一個元素,求a的值,并求出這個元素;

  (2) 若A中至多只有一個元素,求a的取值集合。

  12.若-3 ,求實數a的值。

  【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:集合含義及其表示能給您帶來幫助!

高一數學教案12

  教學目標

  會運用圖象判斷單調性;理解函數的單調性,能判斷或證明一些簡單函數單調性;注意必須在定義域內或其子集內討論函數的單調性。

  重 點

  函數單調性的證明及判斷。

  難 點

  函數單調性證明及其應用。

  一、復習引入

  1、函數的定義域、值域、圖象、表示方法

  2、函數單調性

  (1)單調增函數

  (2)單調減函數

  (3)單調區間

  二、例題分析

  例1、畫出下列函數圖象,并寫出單調區間:

  (1) (2) (2)

  例2、求證:函數 在區間 上是單調增函數。

  例3、討論函數 的單調性,并證明你的結論。

  變(1)討論函數 的單調性,并證明你的結論

  變(2)討論函數 的單調性,并證明你的結論。

  例4、試判斷函數 在 上的單調性。

  三、隨堂練習

  1、判斷下列說法正確的是 。

  (1)若定義在 上的函數 滿足 ,則函數 是 上的單調增函數;

  (2)若定義在 上的函數 滿足 ,則函數 在 上不是單調減函數;

  (3)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數;

  (4)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數。

  2、若一次函數 在 上是單調減函數,則點 在直角坐標平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函數 在 上是___ ___;函數 在 上是__ _____。

  3.下圖分別為函數 和 的圖象,求函數 和 的單調增區間。

  4、求證:函數 是定義域上的單調減函數。

  四、回顧小結

  1、函數單調性的判斷及證明。

  課后作業

  一、基礎題

  1、求下列函數的單調區間

  (1) (2)

  2、畫函數 的圖象,并寫出單調區間。

  二、提高題

  3、求證:函數 在 上是單調增函數。

  4、若函數 ,求函數 的單調區間。

  5、若函數 在 上是增函數,在 上是減函數,試比較 與 的大小。

  三、能力題

  6、已知函數 ,試討論函數f(x)在區間 上的單調性。

  變(1)已知函數 ,試討論函數f(x)在區間 上的單調性。

高一數學教案13

  第一節 集合的含義與表示

  學時:1學時

  [學習引導]

  一、自主學習

  1.閱讀課本 .

  2.回答問題:

  ⑴本節內容有哪些概念和知識點?

  ⑵嘗試說出相關概念的含義?

  3完成 練習

  4小結

  二、方法指導

  1、要結合例子理解集合的概念,能說出常用的數集的名稱和符號。

  2、理解集合元素的特性,并會判斷元素與集合的關系

  3、掌握集合的表示方法,并會正確運用它們表示一些簡單集合。

  4、在學習中要特別注意理解空集的意義和記法

  [思考引導]

  一、提問題

  1.集合中的元素有什么特點?

  2、集合的常用表示法有哪些?

  3、集合如何分類?

  4.元素與集合具有什么關系?如何用數學語言表述?

  5集合 和 是否相同?

  二、變題目

  1.下列各組對象不能構成集合的是( )

  A.北京大學2008級新生

  B.26個英文字母

  C.著名的藝術家

  D.2008年北京奧運會中所設定的比賽項目

  2.下列語句:①0與 表示同一個集合;

  ②由1,2,3組成的集合可表示為 或 ;

  ③方程 的解集可表示為 ;

  ④集合 可以用列舉法表示。

  其中正確的是( )

  A.①和④ B.②和③

  C.② D.以上語句都不對

  [總結引導]

  1.集合中元素的三特性:

  2.集合、元素、及其相互關系的數學符號語言的表示和理解:

  3.空集的含義:

  [拓展引導]

  1.課外作業: 習題11第 題;

  2.若集合 ,求實數 的值;

  3.若集合 只有一個元素,則實數 的值為 ;若 為空集,則 的取值范圍是 .

  撰稿:程曉杰 審稿:宋慶

高一數學教案14

  學習目標:

  (1)理解函數的概念

  (2)會用集合與對應語言來刻畫函數,

  (3)了解構成函數的要素。

  重點:

  函數概念的理解

  難點

  函數符號y=f(x)的理解

  知識梳理:

  自學課本P29—P31,填充以下空格。

  1、設集合A是一個非空的實數集,對于A內 ,按照確定的對應法則f,都有 與它對應,則這種對應關系叫做集合A上的一個函數,記作 。

  2、對函數 ,其中x叫做 ,x的取值范圍(數集A)叫做這個函數的 ,所有函數值的集合 叫做這個函數的 ,函數y=f(x) 也經常寫為 。

  3、因為函數的值域被 完全確定,所以確定一個函數只需要

  。

  4、依函數定義,要檢驗兩個給定的變量之間是否存在函數關系,只要檢驗:

  ① ;② 。

  5、設a, b是兩個實數,且a

  (1)滿足不等式 的實數x的集合叫做閉區間,記作 。

  (2)滿足不等式a

  (3)滿足不等式 或 的實數x的集合叫做半開半閉區間,分別表示為 ;

  分別滿足x≥a,x>a,x≤a,x

  其中實數a, b表示區間的兩端點。

  完成課本P33,練習A 1、2;練習B 1、2、3。

  例題解析

  題型一:函數的概念

  例1:下圖中可表示函數y=f(x)的圖像的只可能是( )

  練習:設M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數關系的有____個。

  題型二:相同函數的判斷問題

  例2:已知下列四組函數:① 與y=1 ② 與y=x ③ 與

  ④ 與 其中表示同一函數的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  練習:已知下列四組函數,表示同一函數的是( )

  A. 和 B. 和

  C. 和 D. 和

  題型三:函數的定義域和值域問題

  例3:求函數f(x)= 的定義域

  練習:課本P33練習A組 4.

  例4:求函數 , ,在0,1,2處的函數值和值域。

  當堂檢測

  1、下列各組函數中,表示同一個函數的是( A )

  A、 B、

  C、 D、

  2、已知函數 滿足f(1)=f(2)=0,則f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、給出下列四個命題:

  ① 函數就是兩個數集之間的對應關系;

  ② 若函數的定義域只含有一個元素,則值域也只含有一個元素;

  ③ 因為 的函數值不隨 的變化而變化,所以 不是函數;

  ④ 定義域和對應關系確定后,函數的值域也就確定了.

  其中正確的有( B )

  A. 1 個 B. 2 個 C. 3個 D. 4 個

  4、下列函數完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四個圖形中,不能表示函數的圖象的是 ( B )

  6、設 ,則 等于 ( D )

  A. B. C. 1 D.0

  7、已知函數 ,求 的值.( )

高一數學教案15

  學 習 目 標

  1明確空間直角坐標系是如何建立;明確空間中任意一點如何表示;

  2 能夠在空間直角坐標系中求出點坐標

  教 學 過 程

  一 自 主 學 習

  1平面直角坐標系建立方法,點坐標確定過程、表示方法?

  2一個點在平面怎么表示?在空間呢?

  3關于一些對稱點坐標求法

  關于坐標平面 對稱點 ;

  關于坐標平面 對稱點 ;

  關于坐標平面 對稱點 ;

  關于 軸對稱點 ;

  關于 對軸稱點 ;

  關于 軸對稱點 ;

  二 師 生 互動

  例1在長方體 中, , 寫出 四點坐標

  討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標系,則各頂點坐標又是怎樣呢?

  變式:已知 ,描出它在空間位置

  例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標系,并確定各頂點坐標

  練1 建立適當直角坐標系,確定棱長為3正四面體各頂點坐標

  練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當空間直角坐標系,試寫出圖中各中點坐標

  三 鞏 固 練 習

  1 關于空間直角坐標系敘述正確是( )

  A 中 位置是可以互換

  B空間直角坐標系中點與一個三元有序數組是一種一一對應關系

  C空間直角坐標系中三條坐標軸把空間分為八個部分

  D某點在不同空間直角坐標系中坐標位置可以相同

  2 已知點 ,則點 關于原點對稱點坐標為( )

  A B C D

  3 已知 三個頂點坐標分別為 ,則 重心坐標為( )

  A B C D

  4 已知 為平行四邊形,且 , 則頂點 坐標

  5 方程 幾何意義是

  四 課 后 反 思

  五 課 后 鞏 固 練 習

  1 在空間直角坐標系中,給定點 ,求它分別關于坐標平面,坐標軸和原點對稱點坐標

  2 設有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標系

  ⑴求 坐標;

  ⑵求 坐標;

【高一數學教案】相關文章:

高一數學教案12-21

高一數學教案06-20

高一數學教案07-20

高一必修四數學教案04-13

關于高一數學教案09-30

人教版高一數學教案12-23

高一必修五數學教案04-10

人教版高一數學教案07-30

上海高一數學教案07-30

最新高一數學教案09-27

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
亚洲AV综合色区久久精品 | 日本免费精品一区二区三区 | 思思久久精品免费视频 | 亚洲欧美一区二区不卡精品 | 依人青青青在线观看视频 | 日本一道综合久久aⅴ免费 色五月这里只有精品 |