- 相關推薦
《用最大公因數解決問題》教學反思范文(通用11篇)
身為一位到崗不久的教師,我們的工作之一就是教學,借助教學反思我們可以快速提升自己的教學能力,教學反思我們應該怎么寫呢?以下是小編為大家整理的《用最大公因數解決問題》教學反思范文,希望能夠幫助到大家。
《用最大公因數解決問題》教學反思 1
這節課是在學習了公因數和最大公因數之后教學的,在實際教學中我發現學生不能靈活利用最大公因數的知識解決實際問題,有的同學一看到求最大、最多、最長是多少,便不假思索,直接求它們的最大公因數,至于為什么是求最大公因數,有的同學不理解,或是知其然而不知其所以然。基于此,我設計了這節課。在教學中,我努力做大了以下幾點:
1、借助操作活動,讓學生形成解決問題的策略。在教學中,我以學生感興趣的六一節活動貫穿始終,讓學生在積極、歡愉的氛圍中學習。通過給學生提供具體的材料,讓他們利用已有的材料,剪一剪、畫一畫、折一折、想一想、算一算,用不同的方法來解決問題。從動手操作中理解要解決這個問題,實質上是求已知數量的最大公因數,并結合課件演示明確為什么是求最大公因數。提升了學生的思維層次。再通過后面的嘗試應用,練一練,靈活應用等環節進一步明確思路。學生在解決問題的過程中獲得感悟,初步形成解決此類問題的策略。
2、預設探究過程,增強學生的`主體意識。嘗試應用環節更是學生自主探究的廣闊平臺,我拋出問題后讓學生獨立探究。為了解決問題,學生充分調動已有知識經驗、方法、技能,八仙過海各顯神通,找出各種求正方形的邊長最長是多少的方法,從中再次體驗到要解決這個問題實質上還是求已知數量的最大公因數。整個教學過程學生能主動的建構知識,而不是簡單模仿,充分體現了學生是課堂學習的主人,課堂是學生學習的天地。
3、教學中我充分發揮小組合作學習能力,給學生充分的交流與研究時間,讓學生在交流展示中明確解決此類問題的策略,達到把復雜的問題變得簡單,把簡單的問題變得有厚度。
《用最大公因數解決問題》教學反思 2
分析基礎知識:本單元是在學生已經理解和掌握倍數、因數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數四則計算的基礎。教材分兩段安排教學內容:第一段,認識公倍數、最小公倍數,探索找兩個數的最小公倍數的方法;第二段,認識公因數、最大公因數,探索找兩個數的最大公因數的方法。此外,在本單元的最后還安排了實踐與綜合應用《數字與信息》。
一、借助操作活動,經歷概念的形成過程。
以往教學公因數的概念,通常是直接找出兩個自然數的.因數,然后讓學生發現有的因數是兩個數公有的,從而揭示公因數和最大公因數的概念。本單元教材注意以直觀的操作活動,讓學生經歷公因數和最大公因數概念的形成過程。這樣安排有兩點好處:一是學生通過操作活動,能體會公倍數和公因數的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程。在這節課上,讓學生按要求自主操作,發現用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發現結果的同時,還引導學生聯系除法算式進行思考,對直觀操作活動的初步抽象。再把初步發現的結論進行類推,發現用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎上,引導學生思考1、2、3、6這些數和18、12有什么關系。這時揭示公因數和最大公因數的概念,突出概念的內涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合圖顯示公因數的意義。實實在在讓學生經歷了概念的形成過程,效果較好。
二、預設探究過程,增強學生主體意識。
例3中,教師宣布游戲規則后,放手讓學生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學生探究廣闊的平臺,教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調動了已有知識經驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數和最大公因數”的方法。在這個過程中,由學生自己建構了公因數和最大公因數的概念,是真正主動探索知識的建構者,而不是模仿者,充分的發掘了學生的自主意識,也充分體現了教師駕馭教材,調控學生的能力。
三、重視方法和策略的滲透,提高學生學習能力。
課程標準只要求在1~100的自然數中,能找出10以內兩個自然數的公倍數和最小公倍數,二是只要求在1~100的自然數中,能找出兩個自然數的公因數和最大公因數,而不是用分解質因數的方法求出公倍數或公因數。不教學用分解質因數的方法求最小公倍數和最大公因數還有兩個原因:一是通過列舉出兩個數的倍數或因數的方法,找出公倍數或公因數。突出對公倍數和公因數意義的理解;二是學生對用短除的形式求最大公因數和最小公倍數的算理理解有困難,減輕學生的學習負擔。所以在教學找公倍數或公因數時,應提倡思考方法多樣化。例4教學中,學生得出了三種方法來尋找12和18的公因數和最大公因數。(當然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優化的過程,哪一種方法會更簡單?通過對比,大多數學生贊同方法二。通過討論,引導學生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導、小結、鼓勵,師生共同得出結論。
復習題中回顧了四年級知識基礎、列舉法和標記法,在例3中,學生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎。例4中,學生也知道用列舉法和標記法來解決問題。
特別是用集合圖來表示因數和公因數的教學值得一提。有趣的游戲,預料中的爭執,恰到好處的體現了圖的妙用,圖的填法比一步步教學生如何填更有效,也更不易遺忘。練習五,第一題在填完集合圖后對公有因數和獨有因數意義的的提升,為下面的學習作了伏筆。體會初步的集合思想。
練一練,并沒有局限于畫畫△、○,找找公因數和最大公因數,而是進一步指導學生觀察,發現公因數都比小的數小(18和30中,18是小的數),在18的因數中找公因數的確更快、更好些。
所以請老師們在平時的教學中也去分析、思考,把握例題和練習中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。
《用最大公因數解決問題》教學反思 3
“公因數和最大公因數”是第三單元第三課時的內容,在此之前,已經學過了公倍數和最小公倍數,掌握了公倍數和最小公倍數的概念和求法,這節課的教學過程與公倍數的教學非常相似,吸取了公倍數教學時的教訓,本節課教學公因數概念的時候,我先讓學生讀題,說清題意,再進行操作,這樣以來學生是帶著問題去操作的,不像公倍數時部分學生題目都理解不了就開始動手操作,不能完全達到本題操作的目的。在教學求公因數方法的時候,我也讓學生與公倍數求法進行了比較,通過比較學生發現了公倍數是無限的,沒有給定范圍時要寫省略號,而公因數是有限個的,要寫好句號,表示書寫完成;還發現找公倍數時是找最小公倍數,而找公因數是最大公因數;還發現求公因數的方法中是先找小數的因數再從其中找大數的因數,而求公倍數卻是利用大數翻倍法,找出來的是大數的倍數,再從其中找出小數的倍數。不僅兩個例題的教學過程相似,連練習的設計也是相似的,所以學生在完成練習的時候,已經對練習的形式較為熟悉,練習完成的較好。正因為兩節課太相似,所以小部分學生已經有些混淆了,分不清怎么求公倍數,怎么求公因數,這個是在以后教學中要避免的。
這節課的`作業也能反映一些本節課上的問題,在教學公倍數的時候,我沒有強調集合中元素的互異性,作業中不少學生在公倍數一欄填寫的數字,同時出現在左右部分的集合中,在這節課練習時,我特意強調了這一點,希望學生們能記住,在完成練習五的時候還發現,部分學生對于2、3、的倍數的特征記得不清楚了,所以在判斷是不是它們的倍數的時候還有一些人用大數去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學生回憶2、3、5的倍數的特征,想必他們會節省更多的時間。
《用最大公因數解決問題》教學反思 4
一、,找一個數的因數
要成對找,這在教學因數時就是一個難點。
二、教學例題3時,應先組織學生大膽猜測:“哪種紙片能正好鋪滿這個長方形?”再讓學生實踐驗證。
猜測、驗證的過程是學生進行探究活動的必要途徑。在實踐驗證的過程中,我緊扣用邊長( )厘米的正方形鋪長方形,能鋪( )層,每層鋪( )個。并與其中有兩種正方形不能正好鋪滿長方形的情況作比較,組織學生交流:“怎樣的正方形才能正好鋪滿這個長方形?”由于前面鋪墊充分,學生很順利地得出了結論。例題3的教學, “哪種哪種紙片能正好鋪滿這個長方形?”“還有哪些邊長整厘米數的.正方形能正好鋪滿這個長方形?”“任何兩個數的公因數個數都是有限的嗎?”將學生的思維一步步引向深入,就能激發學生自主探究的熱情。
三、教學例4時,應充分放手讓學生探索8和12的公因數以及最大公因數。
交流中,應充分肯定學生的方法,學生在交流中出現問題時,應讓他們自我修正,自我完善。并對四種方法進行比較“看哪種方法更便捷”。最大公因數的概念也要通過練習,讓學生自己談對最大公因數的感悟。
《用最大公因數解決問題》教學反思 5
一、分析基礎知識,準確制定教學目標。
本節課是在學生已經理解和掌握因數、倍數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和分數四則計算的基礎。我根據教材的編寫特點準確地制定了教學目標,即理解公因數及最大公因數的意義。知道任意兩個數都有公因數;能夠采用枚舉法找到兩個數的最大公因數。通過動手、觀察、思考等教學活動,從拼擺過程中發現公因數,再通過進一步探究明確公因數及最大公因數的含義。
二、在現實的情境中教學概念,借助直觀操作活動,經歷概念的形成過程。
以往教學公因數的概念,通常是直接找出兩個自然數的因數,然后讓學生發現有的'因數是兩個數公有的,從而揭示公因數和最大公因數的概念。而本節課注意引導學生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導學生觀察這樣的幾組數據與長方形面積之間的關系——右面的這些數據都是左面這些數據的因數。三是揭示出公因數和最大公因數的含義——指出用紅筆標出的這些數據是左面這兩個數的公因數,找到這里面最大的一個公因數,完成由形象到抽象的過程,把感性認識提升為理性認識。
三、把握內涵外延,準確理解概念的含義。
概念的內涵是指這個概念的所反映的一切對象的共同的本質屬性。公因數是幾個數公有的因數,可見“幾個數公有的”是公因數的本質屬性。因此在因數的基礎上學習公因數,關鍵在于突出“公有”的含義。本節課突出概念的內涵是“既是……也是……”即“公有”。教學中,我首先讓學生在練習本上找出12和16的因數,然后借助直觀的集合圖揭示出“既是12的因數,又是16的因數”這句話的含義,幫助學生進一步理解公因數和最大公因數的意義。這樣安排有兩點好處:一是學生通過操作活動,能體會公因數的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程。
概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認識很有好處。本節課我注意利用反例,來凸現公因數的含義。在用集合圖法來表示12和16的公因數的時候,找到填寫錯誤的學生的例子,提示學生注意:并集里填寫的是兩個數的公因數,而沒有交在一起的集合圖中,只填寫這兩個數的都有的因數,從而進一步明確公因數的概念。
四、教學中的不足:
教師的提問有時指向性不是很強,學生不能很快地明白老師的意圖,影響了學生的思考,須進一步提高。在教學“兩個長和寬都是整厘米數的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時,學生有些困難,我應該讓學生動手在本上畫一畫,幫助學生找到,降低難度,這點考慮不周,沒有切實聯系實際。
自己要學的東西還有很多,應注意提高自身修養。多閱讀、多聽課,努力提高自己的教學水平,更好地為學生服務。
《用最大公因數解決問題》教學反思 6
這部分內容是在學生掌握了因數、倍數概念的基礎上進行教學的,主要是為下續學習約分作準備。教材先創設了一個剪紙的問題情境,從實際生活中抽象出概念。這樣處理的好處便于揭示數學與現實世界的聯系,有利于學生理解公因數、最大公因數的概念及現實意義,也有利于培養學生的數學抽象能力。但是將解決問題與概念引入結合在一起,教學上自然會有一定的難度,所以我將主題圖的自由探索與嘗試選正方形的大小來剪。適當降低了一些難度并提高了教學的效率,最后的效果還是不錯的,很容易就引入了公因數和最大公因數的概念。
在現行《課標》中有關求最大公因數的要求是:“能找出兩個自然數的公因數和最大公因數”。重在“找”,而現行教材的分子分母都比較小,學生熟練了以后都能準確的'進行約分,關鍵還是在練習的力度上多下功夫。
融入生活實際。我把找公因數的問題融入實際生活情景中,比如:“有兩根繩子,一根長12米,另一根長28米,要把它們截成同樣長的小段,而且沒有剩余,每段最長應是幾米?一共截幾段?”這時學生理解了求最大公因數的方法和作用,就不難解決這一問題。結合生活實際,使學生真正體會到數學學習的價值,并清楚地知道“為什么學”,真正做到了生活知識數學化。
《用最大公因數解決問題》教學反思 7
教材共提供了三種不同的方式求兩個數的最大公因數,方法一:分別寫出兩個數的因數,再找最大公因數;方法二:先找出一個數的所有因數,再看哪些因數是另一個數的因數,最后從中找出最大的;方法三:用分解質因數的方法找兩個數的最大公因數。我還給學生補充了用短除法求最大公因數。這么多方法,教師應該向學生重點推薦哪種呢?教材中補充拓展的分解質因數方法學生是否都應掌握呢?短除法是否都應掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學中許多學生暗暗地就選擇了它。方法二與方法三相比,在數據偏大且因數較多時,如果用分解質因數的方法來求最大公因數不僅正確率高,而且速度也會大幅提高。但是用分解質因數的方法來求最大公因數對一些學生來說又有相當的難度,至于為什么要把兩個數全部公有的質因數相乘,一些學生還不太明白。
在教學中,我認為教師不能僅僅只是介紹,還有必要讓學生們掌握這種方法技能。用短除法求最大公因數我感覺比較簡單,學生好接受,好理解。但是短除法求最大公因數一直要除到所得的商是互質數時為止。如果用此法,學生必須首先認識“互質數”,并能正確判斷。雖然有關“互質數”的內容教材83頁“你知道嗎”中有所涉及,相應知識的考查在練習十五第6題中也有所體現。至于學生選用哪種策略找兩個數的`最大公因數,我并不強求。從作業反饋情況來看,多數學生更喜歡方法一,但是我們要提醒學生養成先觀察數據特點,然后再動筆的習慣。如兩個數正好成倍數關系或互質數關系時,許多學生仍舊按部就班地采用一般策略來解決,全班只有少數的學生能夠根據“當兩個數成倍數關系時,較小數就是它們的最大公因數”的規律快速找到最大公因數。在這一方面,教師在教學中要率先垂范,做好榜樣。在鞏固練習過程中,也應加強訓練,每次動筆練習之前補充一個環節——觀察與思考。使學生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。
這節課本來想把教材練習十五的習題講解完,但是時間不夠用了,只好下節課再講。
《用最大公因數解決問題》教學反思 8
《標準》指出“學生是數學學習的主人,教師是數學學習的組織者、引導者和合作者。”這一理念要求我們教師的角色必須轉變。我想教師的作用必須體現在以下幾個方面。一是要引導學生思考和尋找眼前的問題與自己已有的知識體驗之間的關聯;二是要提供把學生置于問題情景之中的機會;三是要營造一個激勵探索和理解的氣氛,為學生提供有啟發性的討論模式;四是要鼓勵學生表達,并且在加深理解的基礎上,對不同的答案開展討論;五是要引導學生分享彼此的思想和結果,并重新審視自己的'想法。
對照《課標》的理念,我對《公因數與最大公因數》的教學作了一點嘗試。
一、引導學生思考和尋找眼前的問題與自己已有的知識體驗之間的關聯。
《公因數與最大公因數》是在《公倍數和最小公倍數》之后學習的一個內容。如果我們對本課內容作一分析的話,會發現這兩部分內容無論是在教材的呈現程序還是在思考方法上都有其相似之處。基于這一認識,在課的開始我作了如下的設計:
“今天我們學習公因數與最大公因數。對于今天學習的內容你有什么猜測?”
學生已經學過公倍數與最小公倍數,這兩部分內容有其相似之處,課始放手讓學生自由猜測,學生通過對已有認知的檢索,必定會催生出自己的一些想法,從課的實施情況來看,也取得了令人滿意的效果。什么是公因數和最大公因數?如何找公因數與最大公因數?為什么是最大公因數面不是最小公因數?這一些問題在學生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設計貼近學生的最近發展區,為課堂的有效性奠定了基礎。
二、提供把學生置于問題情景之中的機會,營造一個激勵探索和理解的氣氛
“對于今天學習的內容你有什么猜測?”這一問題的包容性較大,不同的學生面對這一問題都能說出自己不同的猜測,學生的差異與個性得到了較好的尊重,真正體現了面向全體的思想。不同學生在思考這一問題時都有了自己的見解,在相互補充與想互啟發中生成了本課教學的內容,使學生充分體會了合作的魅力,構建了一個和諧的課堂生活。在這一過程中學生深深地體會到數學知識并不是那么高深莫測、可敬而不可親。數學并不可怕,它其實滋生于原有的知識,植根于生活經驗之中。這樣的教學無疑有利于培養學生的自信心,而自信心的培養不就是教育最有意義而又最根本的內容嗎?
三、讓學生進行獨立思考和自主探索
通過學生的猜測,我把學生的提出的問題進行了整理:
(1) 什么是公因數與最大公因數?
(2) 怎樣找公因數與最大公因數?
(3) 為什么是最大公因數而不是最小公因數?
(4) 這一部分知識到底有什么作用?
我先讓學生獨立思考?然后組織交流,最后讓學生自學課本
這樣的設計對學生來說具有一定的挑戰性,在問題解決的過程中充分發揮了學生的主體性。在這一過程中學生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標準》中倡導給學生提供探索與交流的時間和空間的應有之意吧。
《用最大公因數解決問題》教學反思 9
公因數與最大公因數這一課教材設計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學生在解決實際問題中探索公因數的認識。因此,在教學中要重視通過嘗試解決問題讓學生聯系已有的知識來引入公因數的認識。使學生初步體會學習公因數在解決實際問題中有著重要作用。
這節課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學生作業反饋情況來看,部分學生在尋找公因數和最大公因數時,容易出現漏掉因數的情況,如9的因數容易漏掉因數3等。在寫公因數的.示意圖時,部分學生出現中間寫了公因數后,兩邊還是將所有因數都寫了進去,這一情況在預設時我雖然想到了學生會錯,也在課堂上進行了說明,但是少數學生還是出現了錯誤。
用例舉的策略找出所有公因數的教學中,教材上有種層次不同學生可以掌握的方法參考,在這里的教學中我只是參照教材注重了這兩種方法的講解,這里教材的應是要求學生有序地列舉就行了,不同水平的學生采用的方法可以不一樣,因此,在這部分內容的教學時,有些學生運用了一些比較獨特的方法尋找公因數,教師應該給予肯定,說明只要有序地列舉出因數來尋找公因數就可以了。但是,對于學生出現的各種方法可以讓學生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優化。
《用最大公因數解決問題》教學反思 10
《兩三位數除以一位數》商是兩位數是在學生學習了商是三位數和有余數除法的基礎上進行的,它是學習除數是多位數除法的基礎。因此要在引導學生解決具體問題的過程中,切實理解算理,掌握計算方法。
1、聯系舊知,激發興趣
本節課我有意識的在一開始設計了搶答環節,讓學生判斷大屏幕上幾道題目的商的位數,進而發現不同,激發興趣,引入本節課的學習。從效果上看,學生在判斷的過程中比較感興趣,并能初步感受與舊知的聯系與不同,達到了預期的目的。
2、放手學生,設置大問題
本節課我在這方面做的不好。在擺小棒理解算理環節,我領的比較多,學生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學生最后也弄明白了該如何分小棒,但學生的.能力沒有得到提高。在于老師的建議下,在重建設計中,我會注意放手,設置大問題。比如:“請同學們看著大屏幕上的小棒,想一想應該怎樣分呢?先自己想一想,然后同桌交流一下。”讓學生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當引領點撥,但這和我之前的設計感覺就不一樣了,后者更能體現學生主體地位。在這方面,我今后還應提高意識,不斷實踐。
3、設計新穎的練習題,增多練習內容。
計算教學,單純的讓學生計算勢必會使學生產生厭倦。我聯系學生實際和生活實際,設計出多種多樣的練習題,比如:計算之后讓學生思考問題“想一想:三位數除以一位數,什么時候商是三位數,什么時候商是兩位數?”或讓學生“火眼金睛”辨別對錯,或讓學生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環節,將思路滲透到日常教學中,或在最后讓學生根據所學再來一組比賽等,結合學生不同的計算階段提出不同的要求和練習形式,使單調枯燥的計算練習變得生動有趣,達到了較好的教學效果。
我將以本次講課為契機,在今后的教學中應用本次活動學到的知識,加以實踐,不斷提高自身的教學水平。
《用最大公因數解決問題》教學反思 11
對于本節課,我覺得有以下需要解決和認識。
1.復習尋找因數的方法。
2.聯系實際體會學習尋找公因數的必要性。
3.探索尋找2個數的公因數和最大公因數的方法。
4.結合集合方法直觀顯示公因數和最大公因數。
5.理解學習公因數和最大公因數的意義以及應用。
6.結合短除法尋找最大公因數的方法。(這個在人教版中作為了解,在本課中,我向孩子們了解介紹,但未做要求)
在課上,我以為長16dm寬12dm的客廳鋪上正方形方磚,剛好鋪滿,能選用集中方磚,這在無形中蘊含這尋找16和12的因數,這樣能夠孩子們體會尋找公因數的必要性,引起探究欲望。
孩子們有不同的方法和方式去表示公因數的.方式,在最后介紹集合方式,在交集中更直觀現實公因數,這樣更直觀的顯示,初步滲透集合思想。
學習短除法也為后面教學約分做好先知鋪墊,也為孩子們介紹一種尋找最大公因數的簡便方法,滿足不同水平學生學習的需要。
【《用最大公因數解決問題》教學反思】相關文章:
《最大公因數》教學反思07-01
最大公因數教學反思03-06
《最大公因數》教學反思01-15
最大公因數教學反思03-06
《最大公因數》教學反思01-15
公因數和最大公因數教學反思09-29
《公因數和最大公因數》的教學反思范文06-29
《公因數和最大公因數》教學反思范文06-22
數學公因數和最大公因數教學反思06-20