《勾股定理》優秀的教學反思(精選5篇)
身為一名優秀的人民教師,教學是我們的任務之一,對學到的教學技巧,我們可以記錄在教學反思中,那么大家知道正規的教學反思怎么寫嗎?下面是小編整理的《勾股定理》優秀的教學反思(精選5篇),歡迎大家分享。
《勾股定理》優秀的教學反思1
數學學習中工作量最大的部分就是解數學習題,這也是講所學基礎知識轉化為基本技能的必經之路,沒有大量習題的跟進是不可能很好的形成基本解題技能的。習題課就是通過各種相關習題的練習,期望能夠鞏固和深化對所學基礎知識的理解和認識,將這些基礎知識盡快的轉化為基本技能。
今天是第十七章《勾股定理》的一節全章小結部分的習題課,在學生講解習題的時候,講的最不好的地方就是這個或這類習題的解題思路和解題的方法,還有就是解題的基本入手點。也就是說很多的孩子,他們在做課后習題的時候,沒有在分析、思考各類習題的解題思路或方法或入手點方面投入更多的精力,這一點也是我們的學生學習一直不能有大幅度提高的主要問題,也是制約他們有效學習的基本因素。
新的課程理念把教師的角色定義為“教師是學生學習的組織者、引導者和合作者”,教師的主要作用是組織、引導、參與學生的課堂學習活動。而教師在學生的學習活動中更多的是一種指導的作用,而教師的指導更多的應該側重于方法、思想的指導。教師必須介入的就是解題的思路和方法。在這一點上應該是必須的。特別是習題課,教師可以完全不講題,但是在解題方法、思路、入手點這些方面必修介入,以提高學生學習的效率和效果。
另外,學生講題過程中的語言的運用也需要不斷地加以指導,爭取能夠用較為簡練的語言講清楚一個問題的解決過程。
《勾股定理》優秀的教學反思2
勾股定理是中學數學幾個重要定理之一,它揭示了直角三角形三邊之間的數量關系,既是直角三角形性質的拓展,也是后續學習“解直角三角形”的基礎。它緊密聯系了數學中兩個最基本的量——數與形,能夠把形的特征(三角形中一個角是直角)轉化成數量關系(三邊之間滿足a2+b2=c2)堪稱數形結合的典范,在理論上占有重要地位。
八年級學生已具備一定的分析與歸納能力,初步掌握了探索圖形性質的基本方法。但是學生對用割補方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數有機的結合起來還很陌生。
基于以上原因,本節課把學生的探索活動放在首位,一方面要求學生在教師引導下自主探索,合作交流,另一方面要求學生對探究過程中用到的數學思想方法有一定的領悟和認識。從而教給學生探求知識的方法,教會學生獲取知識的本領。并確立了如下的教學目標:
1、學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。
2、讓學生經歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經驗,在過程中養成獨立思考、合作交流的學習習慣;通過解決問題增強自信心,激發學習數學的興趣。
3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內涵,激發生的熱愛祖國悠久文化的思想感情,培養他們的民族自豪感。
教學難點將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積。
本節課根據學生的認知結構采用“觀察——猜想——歸納——驗證——應用”的教學方法,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現,達到了再次點燃學生學習熱情的目的,一舉多得。
除了探究出勾股定理的內容以外,本節課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發學生愛國熱情,培養學生的民族自豪感和探索創新的精神。練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用。讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面。給學生自由的空間,鼓勵學生多說。這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力。作業為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野。
《勾股定理》優秀的教學反思3
課堂教學中要正確地、充分地引導學生探究知識的形成過程,應創造讓學生主動參與學習過程的條件,培養學生的觀察能力、合作能力、探究能力,從而達到提高學生數學素質的目的。多媒體教學的優化組合,在幫助學生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補來驗證勾股定理并不是所有的學生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學生的學習興趣。
在本節課的教學中,老師可以從多方面對學生進行合適的評價。如以學生的課前知識準備是一種態度的評價,上課的拼圖能力是一種動手能力的評價,對所結論的分析是對猜想能力的一種評價,對實際問題的分析是轉化能力的一種評價等等。只有老師給予學生適時的適當的評價,才能使學生充分認識到自身的價值,從而達到提高學生學習自信心的目的,反過來自信心的提高又促使學生學習的積極性大幅度的提高,真正達到從他律轉為自律的目的。也只有這樣才能提高課堂的教學效果,提高學生的學習成績。
我相信教者只有不斷的反思自己的教學,不但能很好地實施新課改,實現課改的根本目的,同時能真正的提高學生學習成績。
《勾股定理》優秀的教學反思4
首先,激發了學生學習數學的興趣。
一直以來,數學作為一門主要學科,在各階段考試中都占有重要的地位,而且數學也是自然科學的基礎學科,因此學生學習的好與壞,即直接影響的最終成績,也對其他理科的學習有一定的影響。目前,人們獲得數學知識的場所主要在數學課堂,而在中學大多數課堂教學的模式是“教師講、學生聽”的傳統教學,教師處于主動地位,學生被動接收知識。教師上課前認真備課,想方設法讓學生把問題想清楚。學生課堂上可以走神,對教師講的問題可認真想,也可不去想,反正最后老師要給出答案的.。于是出現了這樣一種情況:數學家在“做”數學,數學教師在“講”數學,而學生在“聽”數學。然而數學光靠聽,當然學生也就漸漸失去了學習數學的興趣。都說興趣是最好的老師,可是傳統的數學教學本身就具有抽象性,光靠講,很難不去乏味。在多媒體的教學環境下,教學信息的呈現方式是立體、豐富且生動有趣的,學生對于如此眾多的信息呈現形式,表現出的是強烈的興趣,真正做到了全方位地調動學生的多種感官參與學習,使抽象的內容變得更具體、易懂,更有利于激發學習興趣,極大提高學生的參與度。多媒體可以產生一種新的圖文并茂、豐富多彩的人機對話方式,而且可以立即對學習的內容掌握情況進行反饋。在這種交互式學習環境中,老師的作用和地位主要表現在培養學生掌握信息處理工具的方法和分析問題、解決問題的能力上。
其次,運用多媒體可以優化教學設計,有利于呈現過程。
傳統的數學教學,僅借助一塊黑板,一支粉筆、一本書、一張嘴,如此一節課下來,不僅教師累得夠嗆,學生也不輕松,易產生疲勞感甚至厭煩情緒,使得課堂教學信息傳遞結構效率較低。而通過多媒體教學,可以為教學提供強大的情景資源,能展示知識發生的過程,注重學生思維能力的培養,多媒體課件采用動態圖像演示,具有較強的刺激作用,有助于理解概念的本質特征,促進學生在原有的認知基礎上,形成新的認知結構。例如這次上課,我制作了幾何畫板動畫,學生可以自己通過變化圖形,得到直角三角形三邊的關系,這要比直接上課舉例證明更生動,印象更深刻,也更具有說服性。
最后,多媒體教學也有助于提高教師的業務水平和計算機使用能力。
教師要上好一節數學課,必須要認真的備課,需要查閱大量的資料,獲取很多信息,去優化教學效果。龐大的書庫也只有有限的資源,況且還要找,要去翻。而網絡為教師提供了無窮無盡的教學資源,為廣大教師開展教學活動開辟了一條捷徑,大大節省了教師的備課時間。我們可以在網上下載到很多有助于自己教學的資料,包括教學課件和試卷等。通過網絡,我們還可以學習到先進的教學思想、教學理念、教學方法。經常將多媒體信息技術運用到課堂教學的教師,他的教學方法應該總能走到前列。而且在教學中使用多媒體,要求教師有相當的計算機使用能力,也是對我們現代年輕教師個人文化素質提高的鍛煉。
當然,網絡在上課時,也有一些不方便之處需要去解決。例如數學講究敘理過程的書寫。但是學生的打字輸入技能還不能滿足,因此網絡課的習題都是以填空或者選擇為主,書寫的鍛煉還是要靠紙幣去完成?墒牵略谌藶,任何事情都是可以解決的。我想在科技發展迅速的今天,很快就有新技術去解決這些問題。作為年輕教師,我們要敢于挑戰和嘗試,在教學中學習,不斷提高自身的業務水平。
《勾股定理》優秀的教學反思5
星期四上午第三節講了《勾股定理逆定理》第一課時,課后效果和我預想的一樣,由于探究內容偏多,課堂容量大,后半部分感覺倉促,留給學生的思考時間顯得不足。
回頭反思,這節課的設計思路比較合理:定理來源于生活,服務于生活。我由勾股定理引出一道生活實際問題,引起學生的求知欲,然后和學生分三種方法探究,得出“勾股定理逆定理”,經過課堂練習夯實基礎,最后利用新知解決開課時提出的生活實際問題,首尾呼應,學以致用。
怎么避免上述授課時間緊張問題,取得更高的課堂效率呢?我簡單談兩點建議,希望各位數學老師以后教此課時得到共勉。
一是在設計探究時應注重簡化。我設計了三個探究:探究1是古埃及人用結繩打樁法得到直角;探究2是師生用尺規作圖法得到直角;探究3是利用三角形全等的知識通過證明得到直角,F在覺得應把探究2簡化,老師就“勾三股四弦五”給學生當堂做尺規作圖演示,沒有必要再讓學生親自作圖,因為教師的演示,效果明顯,學生已經理解,達到目標要求,這樣就可以節約5分鐘時間。
二是對互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點化,而詳細講解、隨堂練習可做為第二課時的重點,讓出更多時間來做勾股定理逆定理的相應練習,特別是應加大有靈活度和難度生活習題的練習,拓寬學生知識面,提高學生的發散思維能力。
總之,課堂設計要做到一個“狠”字,該刪除的就刪,教學目標不可貪多。我們圍繞授課重點做相應探究,練習,次重點可放在下個課時重點講解,探究時間要預留充足,相應練習寧精勿多,注重雙基才是根本。
【《勾股定理》優秀的教學反思(精選5篇)】相關文章:
職高優秀教學反思12-18
《觀潮》優秀教學反思11-10
《雷雨》優秀教學反思范文(精選10篇)12-30
《老山界》優秀教學反思(精選5篇)12-28
《交談》優秀教學反思范文(精選5篇)12-23
分數的初步認識優秀教學反思(精選11篇)12-23
初中地理優秀教學反思01-15
《賣炭翁》優秀教學反思范文12-28
梁祝優秀教學反思范文12-28