三角形內角和教學設計

時間:2021-05-25 15:10:53 教學設計 我要投稿

三角形內角和教學設計(通用6篇)

  作為一名教師,總不可避免地需要編寫教學設計,教學設計是把教學原理轉化為教學材料和教學活動的計劃。那么優(yōu)秀的教學設計是什么樣的呢?下面是小編幫大家整理的三角形內角和教學設計(通用6篇),歡迎閱讀,希望大家能夠喜歡。

三角形內角和教學設計(通用6篇)

  三角形內角和教學設計1

  【教學目標】

  1、學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內角和等于180度”的規(guī)律。

  2、在探究過程中,經歷知識產生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學重點】

  探究發(fā)現(xiàn)和驗證“三角形的內角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。

  【教學難點】

  對不同探究方法的指導和學生對規(guī)律的靈活應用。

  【教具準備】

  課件、表格、學生準備不同類型的三角形各一個,量角器。

  【教學過程】

  一、激趣引入。

  1、猜謎語

  師:同學們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學生探知心里

  師:大家會不會畫三角形啊?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學習有關三角形角的知識“三角形內角和”(板書課題)

  二、探究新知。

  1、認識三角形的內角

  看看這三個字,說說看,什么是三角形的內角?

  生:就是三角形里面的角。

  師:三角形有幾個內角啊?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內角和

  師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內角和是多少度?

  生:算一算:90°+60°+30°=180°90°+45°+45°=180°

  師:180°也是我們學習過的什么角?

  生:平角

  師:從剛才兩個三角形的內角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的內角和

  師:猜一猜,其它三角形的內角和是多少度呢?

  生:

  4、操作、驗證

  師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

  (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

  (3)驗證的方法不只一種,同學們要多動動腦子。

  師:好,開始活動!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內角和都在180度左右。

  師:其實三角形的內角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個內角撕下來,拼在一起,拼成一個平角,是180度。

  師:好!非常好!

  師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多媒體展示)

  現(xiàn)在老師問同學們,三角形的內角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書:三角形內角和等于180度。現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內角和是180°”。

  三、解決疑問

  師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學會了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內角和是()度。

  (2)一個三角形的兩個內角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

  (1)∠1=27°∠2=53°∠3=()這是一個()三角形。

  (2)∠1=70°∠2=50°∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內角。

  (1)80°95°5°()

  (2)60°70°90°()

  (3)30°40°50°()

  4、紅領巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)

  對學生進行思品教育。

  5、思考延伸。

  根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  三角形內角和教學設計2

  教學內容:

  教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。

  教學目標:

  1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

  2、能運用三角形的內角和是180°這一結論,求三角形中未知角的度數(shù)。

  3、培養(yǎng)學生動手動腦及分析推理能力。

  重點難點:

  掌握三角形的內角和是180°。

  教學準備:

  三角形卡片、量角器、直尺。

  導學過程

  一、復習

  1、什么是平角?平角是多少度?

  2、計算角的度數(shù)。

  3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)

  二、新知

  (設計意圖:讓學生經歷質疑驗證結論這樣的思維過程,真正整體感知三角形內角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))

  1、讀學卡的學習目標、任務目標,做到心里有數(shù)。

  2、揭題:課件演示什么是三角形的內角和。

  3、猜想:三角形的內角和是多少度。

  4、驗證:

  (1)初證:用一副三角板說明直角三角形的內角和是180°。

  (2)質疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

  (3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內角和是180°(師巡視)

  (4)匯報結論(清楚明白的給小組加優(yōu)秀10分)

  5、結論:修改板書,把“?”去掉,寫“是”。

  6、追問:把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說明三角形無論大小它的內角和都是180°(課件演示)

  7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)

  三、知識運用(課件出示練習題,生解答)

  1、填空

  (1)一個三角形,它的兩個內角度數(shù)之和是110,第三個內角是().

  (2)一個直角三角形的一個銳角是50,則另一個銳角是()。

  (3)等邊三角形的3個內角都是()。

  (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。

  (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。

  2、判斷

  (1)一個三角形中最多有兩個直角。()

  (2)銳角三角形任意兩個內角的和大于90。()

  (3)有一個角是60的等腰三角形不一定是等邊三角形。()

  (4)三角形任意兩個內角的和都大于第三個內角。()

  (5)直角三角形中的兩個銳角的和等于90。()

  四、拓展探究

  根據所學的知識,你能想辦法求出四邊形、五邊形的內角和嗎?

  1、小組討論。2、匯報結果。3、課件提示幫助理解。

  五、自我評價根據學卡要求給自己評出“優(yōu)”“良好”“合格”。

  六、談談自己本節(jié)課的收獲。

  教學反思

  今天我講了《三角形內角和》這部分內容,學生其實通過不同途徑已經知道三角形內角和是180°,是不是說這節(jié)課的重難點就已經突破了,只要學生能應用知識解決問題就算是達到這節(jié)課的教學目標了呢?我想應該好好思考教材背后要傳遞的東西。

  任何規(guī)律的發(fā)現(xiàn)都要經過一個猜測、驗證的過程,不經歷這個探究的過程,學生對于這一內容的認識就不深刻,聰明的孩子還會懷疑三角形內角和是180°嗎?。因此這個結論必須由實踐操作得出結論。所以最終我把本課定為一個實踐探究課。

  如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉向對未知的探求,怎樣直接轉向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。

  如何驗證內角和是180°,是我一直比較糾結的環(huán)節(jié)。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結果充滿自信,否則拼個差不多也可以簡單的認同了內角和是180°。

  本節(jié)課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內角和體會三角形內角和跟大小無關、跟形狀無關,到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內角和是多少度,求被剪開的三角形,形成的新圖形的內角和是多少度,這些都是對三角形內角和的一次拓展。讓學生的認知發(fā)生沖突,提出挑戰(zhàn)。

  給學生一個平臺,她會給你一片精彩。通過動手操作來驗證內角和是否是180°,學生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。

  前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內角和時,給的時間過短,學生沒有充分思維。

  總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預設好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松和諧的教學氛圍中與學生共同去探討,去發(fā)現(xiàn),去學習。

  三角形內角和教學設計3

  教學目標:

  1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  3、經歷三角形內角和的研究方法,感受數(shù)學研究方法。

  教學重點:

  1、探索和發(fā)現(xiàn)三角形三個內角的度數(shù)和等于180°。

  2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  教學難點:掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數(shù)學思想探究三角形內角和。

  教學用具:表格、課件。

  學具準備:各種三角形、剪刀、量角器。

  一、創(chuàng)設情境揭示課題。

  1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內角和一定比你大。”小三角形很不甘心地說:“我有一個鈍角,我的內角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。

  生1:大三角形大(個子大)

  生2:小三角形大(有鈍角)

  (教師不做判斷,讓學生帶著問題進入新課)

  2、什么是三角形的內角和?(板書:內角和)

  講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數(shù)加起來就是三角形的內角和。

  二、自主探究,合作交流。

  (一)提出問題:

  1、你認為誰說得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個三角形的內角和呢?

  生1:用量角器量一量三個內角各是多少度,把它們加起來,再比較。

  生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

  生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

  (二)探索與發(fā)現(xiàn)

  活動一:量一量

  (1)①了解活動要求:(屏幕顯示)

  A、在練習本上畫一個三角形,量一量三角形三個內角的度數(shù)并標注。(測量時要認真,力求準確)

  B、把測量結果記錄在表格中,并計算三角形內角和。

  C、討論:從剛才的測量和計算結果中,你發(fā)現(xiàn)了什么?

  (引導生回顧活動要求)

  ②小組合作。

  ③匯報交流。

  你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現(xiàn)了什么?

  (引導學生發(fā)現(xiàn)每個三角形的三個內角和都在180°,左右。)

  (2)提出猜想

  剛才我們通過測量和計算發(fā)現(xiàn)了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)

  活動二:拼一拼,驗證猜想

  這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

  引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?

  (1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°)。

  (2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

  (3)分組匯報,討論質疑

  (4)課件演示,驗證結果

  活動三:折一折

  師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

  (把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

  提問:還有沒有其它的方法?

  3、回顧兩種方法,歸納總結,得出結論。

  (1)引導學生得出結論。

  孩子們,三角形內角和到底等于多少度呢?”

  學生答:“180°!”

  (2)總結方法,齊讀結論

  我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們?yōu)樽约旱某晒恼疲↓R讀結論。(板書:得到結論)

  (3)解釋測量誤差

  為什么我們剛才通過測量,計算出來的三角形內角和不是180°,呢?

  那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于180°

  (三)回顧問題:

  現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對!)

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數(shù)學書28頁第3題

  ∠A=180°—90°—30°

  2、練一練:數(shù)學書29頁第一題(生獨立解決)

  ∠A=180°—75°—28°

  3、小法官:數(shù)學書29頁第二題

  四、回顧課堂,滲透數(shù)學方法。

  1、總結:猜想—驗證—歸納—應用的數(shù)學方法。

  2、介紹:三角形內角和等于180度這個結論的由來;數(shù)學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動:探索——多邊形內角和

  板書設計:

  探索與發(fā)現(xiàn)(一)

  三角形內角和等于180°

  三角形內角和教學設計4

  【教材分析】

  《三角形內角和》是北師大版《數(shù)學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數(shù),求出第三個角的度數(shù)。

  【學生分析】

  經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產生了濃厚的興趣。1.知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

  【學習目標】

  知識目標:掌握三角形內角和是180度這一規(guī)律,并能實際應用。

  能力目標:培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。

  情感目標:讓學生體會幾何圖形內在的結構美。

  【教學過程】

  一、情景激趣,質疑猜想。

  播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發(fā)了一場激烈的爭吵。

  鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大。”銳角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小。”直角三角形說:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的。”

  師:想一想,什么是三角形的三個內角的和。

  生:三角形的三個內角的度數(shù)和。

  師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

  學生進行猜想,自由發(fā)言。

  (設計意圖:教師借助多媒體技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質疑猜想是培養(yǎng)學生學會學習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是180°,你能設法驗證這個猜想嗎?

  生1:能。我量出三角形的三個內角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。

  生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

  生3:我把三角形的三個角撕下來,拼一拼是否180°。

  生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。

  ……

  師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧!(學生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)

  學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。

  (設計意圖:驗證猜想為學生提供了“做數(shù)學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)

  三、交流評價,歸納結論。

  學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

  實驗報告單

  實驗名稱

  三角形內角和

  實驗目的

  探究三角形內角和是多少度。

  實驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的'方法

  我的發(fā)現(xiàn)

  我的表現(xiàn)

  自評

  互評

  學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學生的閃光點及時進行表揚和鼓勵。

  師生共同歸納,得出結論:

  三角形內角和等于180°

  (設計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發(fā)現(xiàn)的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創(chuàng)新。

  ①課件出示:

  師:這個三角形是什么三角形?知道幾個內角的度數(shù)?

  生:直角三角形,知道一個角是30°,還有一個角是90°。∠A=90°-30°=60°。

  師:根據今天所學的知識,誰能求出A的度數(shù)?大家自己試一試。

  學生做完后反饋講評時讓學生說說自己的方法。

  生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A=60°。

  ②學生完成完成P29的第一題。

  引導學生按照前面的方法獨立完成,教師巡視,集體訂正。

  ③猜一猜三角形的另外兩個角可能各是多少度。

  同桌同學互相說一說。(答案不唯一)

  ④小組操作探究活動。

  讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

  方法

  四邊形內角和

  用量角器量出每個內角的度數(shù),并相加。

  把四邊形四個角剪下來,拼在一起。

  把四邊形分為兩個三角形。

  填表后讓學生想一想、互相說一說,四邊形內角和是多少度?

  (設計意圖:引導學生將探究學習活動中所獲得的結論經驗和方法運用于探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)

  三角形內角和教學設計5

  【教學內容】

  《人教版九年義務教育教科書數(shù)學》四年級下冊《三角形的內角和》

  【教學目標】

  1.使學生知道三角形的內角和是180,并能運用三角形的內角和是180解決生活中常見的問題。

  2.讓學生經歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內角和是180。

  3.培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。

  【教學重點】

  使學生知道三角形的內角和是180,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內角和是180。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。

  【教學過程】

  一、激趣導入,提煉學習方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經驗的老木匠了。我收了三個徒弟,他們已經從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內角的和是多少?(板書課題:三角形的內角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發(fā)給以下幾種學具:

  折一折組同學發(fā)給上面的三角形一組。

  拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的。

  (2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)

  (3)請學生說說通過探究活動你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導這一組從探究的過程和結論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的。快來把你們的方法給大家匯報匯報。

  同樣引導這一組從探究的過程和結論與同學、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內角和就是180。(板書:三角形的內角和是180)

  四、走進生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結

  師:徒弟們你們經過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老。”你們下山后還要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們去研究。

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內角和是多少度嗎?

  三角形內角和教學設計6

  【設計理念】

  新課標重視讓學生經歷數(shù)學知識的形成過程,要求教師創(chuàng)設有效的問題情境激發(fā)學生的參與欲望,提供足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數(shù)學問題的活動經驗,發(fā)展空間觀念和推理能力。

  【教材內容】新人教版義務教育課程標準實驗教科書四年級下冊數(shù)學第67頁例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學內容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。

  【學情分析】

  1、在學習本課時,學生已經有了探索三角形內角和的知識基礎:知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經知道了等腰三角形和正三角形。

  2、已經有一部分學生知道了三角形內角和是180°,只是知其然而不知所以然。

  【教學目標】

  1、通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內角和是180°,并能運用這個知識解決一些簡單的問題。

  2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學活動經驗,發(fā)展空間觀念和推理能力。

  3、在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受數(shù)學探究的嚴謹與樂趣。

  【教學重點】

  探索發(fā)現(xiàn)、驗證“三角形內角和是180°”,并運用這個知識解決實際問題。

  【教學難點】

  驗證“三角形的內角和是180°”。

  【教(學)具準備】

  多媒體課件;銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

  【教學步驟】

  一、復習舊知引出課題

  1、你已經知道有關三角形的哪些知識?

  2、出示課題:三角形的內角和

  設計意圖:也自然導入新課。

  二、提出問題引發(fā)猜想

  1、提出問題:看到這個課題,你有什么問題想問的?

  預設:(1)三角形的內角指的是哪些角?(2)三角形的內角和是什么意思?

  (3)三角形的內角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內角和是多少度?你是怎么猜的?

  設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內容,無疑激發(fā)了學生的學習興趣,培養(yǎng)了學生的問題意識。由于學生在平時使用三角板時已經若隱若現(xiàn)地有了特殊的直角三角形的內角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經驗,并體會到猜想要合理且有根據,同時也為推理驗證的引出作必要的鋪墊。

  三、操作驗證形成結論

  1、交流驗證方法:

  (1)用什么方法證明三角形的內角和是180度呢?

  預設:①量算法②剪拼法③折拼法等

  (2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

  2、動手驗證

  3、全班匯報交流

  4、小結:剛才通過大家的動手操作驗證了三角形的內角和是180°度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內角和來證明其他三角形內角和是180°的方法。

  6、形成結論:任意三角形的內角和是180°。

  設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經驗。”猜測后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經驗,為后續(xù)的學習提供了經驗支撐。

  四、應用結論解決問題

  1、鞏固新知:想一想,算一算。

  2、解決問題:等腰三角形風箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節(jié)課你學到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學的方法繼續(xù)研究四邊形的內角和。

【三角形內角和教學設計(通用6篇)】相關文章:

《三角形的內角和》教學反思(通用12篇)12-25

多邊形的內角和教學設計02-09

 三角形的內角和課件和教案05-12

初中三角形內角和優(yōu)秀的教學設計范文(精選5篇)12-27

三角形的內角和試講稿11-16

《三角形的內角和》優(yōu)秀說課稿模板12-28

《三角形的內角和》說課稿7篇11-05

《狼和小羊》教學設計通用15篇12-26

《獅子和鹿》教學設計和反思12-16

《等腰三角形》教學設計02-14

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
亚洲国产精品一区二区第一页免 | 一区二区無碼在線觀看 | 亚洲V国产V日韩V欧美V | 亚洲免费人成影院在线播放 | 亚洲日本在线观看网址 | 亚洲黄金精品在线观看 |