《鴿巢問題第1課時》教學設計

時間:2025-01-16 14:34:49 夏杰 教學設計 我要投稿
  • 相關推薦

《鴿巢問題(第1課時)》教學設計(精選10篇)

  在教學工作者實際的教學活動中,通常會被要求編寫教學設計,借助教學設計可以更好地組織教學活動。那么寫教學設計需要注意哪些問題呢?以下是小編為大家收集的《鴿巢問題(第1課時)》教學設計(精選10篇),供大家參考借鑒,希望可以幫助到有需要的朋友。

《鴿巢問題(第1課時)》教學設計(精選10篇)

  《鴿巢問題第1課時》教學設計 1

  一、教學目標

  (一)知識與技能

  通過數學活動讓學生了解鴿巢原理,學會簡單的鴿巢原理分析方法。

  (二)過程與方法

  結合具體的實際問題,通過實驗、觀察、分析、歸納等數學活動,讓學生通過獨立思考與合作交流等活動提高解決實際問題的能力。

  (三)情感態度和價值觀

  在主動參與數學活動的過程中,讓學生切實體會到探索的樂趣,讓學生切實體會到數學與生活的緊密結合。

  二、教學重難點

  教學重點:理解鴿巢原理,掌握先“平均分”,再調整的方法。

  教學難點:理解“總有”“至少”的意義,理解“至少數=商數+1”。

  三、教學準備

  多媒體課件。

  四、教學過程

  (一)游戲引入

  出示一副撲克牌。

  教師:今天老師要給大家表演一個“魔術”。取出大王和小王,還剩下52張牌,下面請5位同學上來,每人隨意抽一張,不管怎么抽,至少有2張牌是同花色的。同學們相信嗎?

  5位同學上臺,抽牌,亮牌,統計。

  教師:這類問題在數學上稱為鴿巢問題(板書)。因為52張撲克牌數量較大,為了方便研究,我們先來研究幾個數量較小的同類問題。

  【設計意圖】從學生喜歡的“魔術”入手,設置懸念,激發學生學習的興趣和求知欲望,從而提出需要研究的數學問題。

  (二)探索新知

  1、教學例1。

  (1)教師:把3支鉛筆放到2個鉛筆盒里,有哪些放法?請同桌二人為一組動手試一試。

  教師:誰來說一說結果?

  預設:一個放3支,另一個不放;一個放2支,另一個放1支。(教師根據學生回答在黑板上畫圖表示兩種結果)

  教師:“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”,這句話說得對嗎?

  教師:這句話里“總有”是什么意思?

  預設:一定有。

  教師:這句話里“至少有2支”是什么意思?

  預設:最少有2支,不少于2支,包括2支及2支以上。

  【設計意圖】把教材中例1的“筆筒”改為“鉛筆盒”,便于學生準備學具。且用畫圖和數的分解來表示上述問題的結果,更直觀。通過對“總有”“至少”的意思的'單獨說明,讓學生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話。

  (2)教師:把4支鉛筆放到3個鉛筆盒里,有哪些放法?請4人為一組動手試一試。

  教師:誰來說一說結果?

  學生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教師根據學生回答在黑板上畫圖表示四種結果)

  引導學生仿照上例得出“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”。

  假設法(反證法):

  教師:前面我們是通過動手操作得出這一結論的,想一想,能不能找到一種更為直接的方法得到這個結論呢?小組討論一下。

  學生進行組內交流,再匯報,教師進行總結:

  如果每個盒子里放1支鉛筆,最多放3支,剩下的1支不管放進哪一個盒子里,總有一個盒子里至少有2支鉛筆。首先通過平均分,余下1支,不管放在哪個盒子里,一定會出現“總有一個盒子里至少有2支鉛筆”。這就是平均分的方法。

  【設計意圖】從另一方面入手,逐步引入假設法來說理,從實際操作上升為理論水平,進一步加深理解。

  教師:把5支鉛筆放到4個鉛筆盒里呢?

  引導學生分析“如果每個盒子里放1支鉛筆,最多放4支,剩下的1支不管放進哪一個盒子里,總有一個盒子里至少有2支鉛筆。首先通過平均分,余下1支,不管放在哪個盒子里,一定會出現“總有一個盒子里至少有2支鉛筆”。

  教師:把6支鉛筆放到5個鉛筆盒里呢?把7支鉛筆放到6個鉛筆盒里呢?……你發現了什么?

  引導學生得出“只要鉛筆數比鉛筆盒數多1,總有一個盒子里至少有2支鉛筆”。

  教師:上面各個問題,我們都采用了什么方法?

  引導學生通過觀察比較得出“平均分”的方法。

  【設計意圖】讓學生自己通過觀察比較得出“平均分”的方法,將解題經驗上升為理論水平,進一步強化方法、理清思路。

  (3)教師:現在我們回過頭來揭示本節課開頭的魔術的結果,你能來說一說這個魔術的道理嗎?

  引導學生分析“如果4人選中了4種不同的花色,剩下的1人不管選那種花色,總會和其他4人里的一人相同。總有一種花色,至少有2人選”。

  【設計意圖】回到課開頭提出的問題,揭示懸念,滿足學生的好奇心,讓學生認識到數學的應用價值。

  (4)練習教材第68頁“做一做”第1題(進一步練習“平均分”的方法)。

  5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?

  2、教學例2。

  (1)課件出示例2。

  把7本書放進3個抽屜,不管怎么放,總有一個抽屜里至少放進3本書。為什么?

  先小組討論,再匯報。

  引導學生得出仿照例1“平均分”的方法得出“如果每個抽屜放2本,剩下1本不管放在哪個抽屜里,都會變成3本,所以總有一個抽屜里至少放進3本書。”

  (2)教師:如果把8本書放進3個抽屜,會出現怎樣的結論呢?10本呢?11本呢?16本呢?

  教師根據學生的回答板書:

  7÷3=2……1不管怎么放,總有一個抽屜里至少放進3本;

  8÷3=2……2不管怎么放,總有一個抽屜里至少放進3本;

  10÷3=3……1不管怎么放,總有一個抽屜里至少放進4本;

  11÷3=3……2不管怎么放,總有一個抽屜里至少放進4本;

  16÷3=5……1不管怎么放,總有一個抽屜里至少放進6本。

  教師:觀察上述算式和結論,你發現了什么?

  引導學生得出“物體數÷抽屜數=商數……余數”“至少數=商數+1”。

  【設計意圖】一步一步引導學生合作交流、自主探索,讓學生親身經歷問題解決的全過程,增強學習的積極性和主動性。

  (三)鞏固練習

  1、11只鴿子飛進了4個鴿籠,總有一個鴿籠至少飛進了3只鴿子。為什么?

  2、5個人坐4把椅子,總有一把椅子上至少坐2人。為什么?

  (四)課堂小結

  教師:通過這節課的學習,你有哪些新的收獲呢?

  我們學會了簡單的鴿巢問題。

  可以用畫圖的方法來幫助我們分析,也可以用除法的意義來解答。

  《鴿巢問題第1課時》教學設計 2

  教學內容

  審定人教版六年級下冊數學《數學廣角 鴿巢問題》,也就是原實驗教材《抽屜原理》。

  設計理念

  《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數學的一個基本原理,最先是由德國數學家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。

  首先,用具體的操作,將抽象變為直觀。“總有一個筒至少放進2支筆”這句話對于學生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現“總有一個筒至少放進2支筆”這種現象,讓學生理解這句話。

  其次,充分發揮學生主動性,讓學生在證明結論的過程中探究方法,總結規律。學生是學習的主動者,特別是這種原理的初步認識,不應該是教師牽著學生去認識,而是創造條件,讓學生自己去探索,發現。所以我認為應該提出問題,讓學生在具體的操作中來證明他們的結論是否正確,讓學生初步經歷“數學證明”的過程,逐步提高學生的邏輯思維能力。

  再者,適當把握教學要求。我們的教學不同奧數,因此在教學中不需要求學生說理的嚴密性,也不需要學生確定過于抽象的“鴿巢”和“物體”。

  教材分析

  《鴿巢問題》這是一類與“存在性”有關的問題,如任意13名學生,一定存在兩名學生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據的理論,我們稱之為“鴿巢問題”。

  通過第一個例題教學,介紹了較簡單的“鴿巢問題”:只要物體數比鴿巢數多,總有一個鴿巢至少放進2個物體。它意圖讓學生發現這樣的一種存在現象:不管怎樣放,總有一個筒至少放進2支筆。呈現兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。

  第二個例題是在例1的基礎上說明:只要物體數比鴿巢數多,總有一個鴿巢里至少放進(商+1)個物體。因此我認為例2的目的是使學生進一步理解“盡量平均分”,并能用有余數的除法算式表示思維的過程。

  學情分析

  可能有一部分學生已經了解了鴿巢問題,他們在具體分得過程中,都在運用平均分的方法,也能就一個具體的問題得出結論。但是這些學生中大多數只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學生完全沒有接觸,所以他們可能會認為至少的情況就應該是“1”。

  教學目標

  1、通過猜測、驗證、觀察、分析等數學活動,經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建模”思想。

  2、經歷從具體到抽象的探究過程,提高學生有根據、有條理地進行思考和推理的能力。

  3、通過“鴿巢原理”的靈活應用,提高學生解決數學問題的能力和興趣,感受到數學文化及數學的魅力。

  教學重點

  經歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。

  教學難點

  理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。

  教具準備:相關課件 相關學具(若干筆和筒)

  教學過程

  一、游戲激趣,初步體驗。

  游戲規則是:請這四位同學從數字1、2、3中任選一個自己喜歡的數字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。

  [設計意圖:聯系學生的生活實際,激發學習興趣,使學生積極投入到后面問題的研究中。]

  二、操作探究,發現規律。

  1、具體操作,感知規律

  教學例1: 4支筆,三個筒,可以怎么放?請同學們運用實物放一放,看有幾種擺放方法?

  (1)學生匯報結果

  (4 ,0 , 0 ) (3 ,1 ,0) (2 ,2 ,0) (2 , 1 , 1 )

  (2)師生交流擺放的結果

  (3)小結:不管怎么放,總有一個筒里至少放進了2支筆。

  (學情預設:學生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆。”)

  [設計意圖:鴿巢問題對于學生來說,比較抽象,特別是“不管怎么放,總有一個筒里至少放進了2支筆。”這句話的理解。所以通過具體的操作,枚舉所有的情況后,引導學生直接關注到每種分法中數量最多的筒,理解“總有一個筒里至少放進了2支筆”。讓學生初步經歷“數學證明”的過程,訓練學生的邏輯思維能力。]

  質疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結論的方法呢?

  2、假設法,用“平均分”來演繹“鴿巢問題”。

  1.思考,同桌討論:要怎么放,只放一次,就能得出這樣的結論?

  學生思考——同桌交流——匯報

  2.匯報想法

  預設生1:我們發現如果每個筒里放1支筆,最多放4支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。

  3.學生操作演示分法,明確這種分法其實就是“平均分”。

  [設計意圖:鼓勵學生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎上,學生意識到了要考慮最少的情況,從而引出假設法滲透平均分的思想。]

  三、探究歸納,形成規律

  1、課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應該怎樣列式“平均分”。

  [設計意圖:引導學生用平均分思想,并能用有余數的除法算式表示思維的過程。]

  根據學生回答板書:5÷2=2……1

  (學情預設:會有一些學生回答,至少數=商+余數 至少數=商+1)

  根據學生回答,師邊板書:至少數=商+余數?

  至少數=商+1 ?

  2、師依次創設疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據回答,依次板書)

  ……

  7÷5=1……2

  8÷5=1……3

  9÷5=1……4

  觀察板書,同學們有什么發現嗎?

  得出“物體的數量大于鴿巢的數量,總有一個鴿巢里至少放進(商+1)個物體”的`結論。

  板書:至少數=商+1

  [設計意圖:對規律的認識是循序漸進的。在初次發現規律的基礎上,從“至少2支”得到“至少商+余數”個,再到得到“商+1”的結論。]

  師過渡語:同學們的這一發現,稱為“鴿巢問題”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“鴿巢原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。

  四、運用規律解決生活中的問題

  課件出示習題:

  1、 三個小朋友同行,其中必有幾個小朋友性別相同。

  2、五年一班共有學生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。

  3、從電影院中任意找來13個觀眾,至少有兩個人屬相相同。

  ……

  [設計意圖:讓學生體會平常事中也有數學原理,有探究的成就感,激發對數學的熱情。]

  五、課堂總結

  這節課我們學習了什么有趣的規律?請學生暢談,師總結

  《鴿巢問題第1課時》教學設計 3

  教學目標:

  1、引導學生經歷鴿巢原理的探究過程,初步了解鴿巢原理,會運用鴿巢原理解決一些簡單的實際問題。

  2、通過操作、觀察、比較、列舉、假設、推理等活動發展學生的類推能力,形成比較抽象的數學思維。

  3、使學生經歷將具體問題“數學化”的過程,初步形成模型思想。

  教學重點:

  經歷鴿巢原理的探究過程,初步了解鴿巢原理。

  教學難點:

  理解鴿巢原理,并對一些簡單的實際問題加以模型化。

  教學過程:

  一、創設情境、導入新課

  1、師:同學們,你們玩過撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)

  2、師:大家猜對了嗎?其實這里面藏著一個非常有趣的數學問題,叫做“鴿巢問題”。今天我們就一起來研究它。

  二、合作探究、發現規律

  師:研究一個數學問題,我們通常從簡單一點的情況開始入手研究。請看大屏幕。(生齊讀題目)

  1、教學例1:把4支鉛筆放進3個筆筒里,不管怎么放,總有一個筆筒里至少有2支鉛筆。

  (1)理解“總有”、“至少”的含義。(PPT)總有:一定有 至少:最少

  師:這個結論正確嗎?我們要動手來驗證一下。

  (2)同學們的課桌上都有一張作業紙,請同桌兩人合作探究:把4支鉛筆放進3個筆筒里,有幾種不同的擺法?

  探究之前,老師有幾個要求。(一生讀要求)

  (3)匯報展示方法,證明結論。(展示兩張作品,其中一張是重復擺的。)

  第一張作品:誰看懂他是怎么擺的?(一生匯報,發現重復的擺法)

  第二張作品:他是怎么擺的?這4種擺法有沒有重復的?還有其他的擺法嗎?板書:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)

  師:我們要證明的是總有一個筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報:第一種擺法中哪個筆筒滿足要求?只要發現有一個筆筒里至少有2支鉛筆就行了。)總結:把4支鉛筆放進3個筆筒中一共只有四種情況,在每一種情況中,都一定有一個筆筒中至少有2支鉛筆。看來這個結論是正確的。

  師:像這樣把所有情況一一列舉出來的'方法,數學上叫做“枚舉法”。(板書)

  (4)通過比較,引出“假設法”

  同桌討論:剛才我們把4種情況都列舉出來進行驗證,能不能找到一種更簡單直接的方法,只擺一種情況就能證明這個結論是正確的?

  引導學生說出:假設先在每個筆筒里放1支,還剩下1支,這時無論放到哪個筆筒,那個筆筒里就有2支鉛筆了。(PPT演示)

  (5)初步建模—平均分

  師:先在每個筆筒里放1支,這種分法實際上是怎么分的?

  生:平均分(師板書)

  師:為什么要去平均分呢?平均分有什么好處?

  生:平均分可以保證每個筆筒里的筆數量一樣,盡可能的少。這樣多出來的1支不管放進哪個筆筒里,總有一個筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個筆筒里,這樣就不能保證一下子找到最少的情況了)

  師:這種先平均分的方法叫做“假設法”。怎么用算式表示這種方法呢?

  板書:4÷3=1……1 1+1=2

  (5)概括鴿巢問題的一般規律

  師:現在我們把題目改一改,結果會怎樣呢?

  PPT出示:把5支筆放進4個筆筒里,不管怎么放,總有一個筆筒里至少有幾支筆?……(引導學生說清楚理由)

  師:為什么大家都選擇用假設法來分析?(假設法更直接、簡單)

  通過這些問題,你有什么發現?

  交流總結:只要筆的數量比筆筒數量多1,總有一個筆筒里至少放進2支筆。

  過渡語:師:如果多出來的數量不是1,結果會怎樣呢?

  2、出示:5只鴿子飛進了3個鴿籠,總有一個鴿籠里至少飛進了幾只鴿子呢?

  (1)同桌討論交流、指名匯報。

  先讓一生說出5÷3=1……2 1+2=3 的結果,再問:有不同的意見嗎?

  再讓一生說出5÷3=1……2 1+1=2

  師:你們同意哪種想法?

  (2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?

  (3)明確:再次平均分,才能保證“至少”的情況。

  3、教學例2

  (1)師:我們剛才研究的把筆放入筆筒、鴿子飛進鴿籠這樣的問題就叫做“鴿巢問題”,也叫“抽屜問題”。它最早是由德國數學家狄利克雷發現并提出的,當他發現這個問題之后決定繼續深入研究下去。出示例2。

  (2)獨立思考后指名匯報。

  師板書:7÷3=2……1 2+1=3

  (3)如果有8本書會怎樣?10本書呢?

  指名回答,師相機板書:8÷3=2……2 2+1=3

  師:剩下的2本怎么放才更符合“至少”的要求?

  為什么不能用商+2?

  10÷3=3……1 3+1=4

  (4)觀察發現、總結規律

  同桌討論交流:學到這里,老師想請大家觀察這些算式并思考一個問題,把書放進抽屜里,總有一個抽屜里至少放進了幾本書?我們是用什么方法去找到這個結果的?(假設法,也就是平均分的方法)用書的數量去除以抽屜的數量,會得到一個商和一個余數,最后的結果都是怎么計算得到的?為什么不能用商加余數?

  歸納總結:總有一個抽屜里至少可以放“商+1”本書。(板書: 商+1)

  三、鞏固應用

  師:利用鴿巢問題中這個原理可以解釋生活中很多有趣的問題。

  1、做一做第1、2題。

  2、用抽屜原理解釋“撲克表演”。

  說清楚把4種花色看作抽屜,5張牌看作要放進的書。

  四、全課小結通過這節課的學習,你有什么收獲或感想?

  《鴿巢問題第1課時》教學設計 4

  教學目標:

  1、知識與技能:通過操作、觀察、比較、推理等活動,初步了解鴿巢原理,學會簡單的鴿巢原理分析方法,運用鴿巢原理的知識解決簡單的實際問題。

  2、過程與方法:在鴿巢原理的探究過程中,使學生逐步理解和掌握鴿巢原理,經歷將具體問題數學化的過程,培養學生的模型思想。

  3、情感態度:通過對鴿巢原理的靈活運用,感受數學的魅力,體會數學的價值,提高學生解決相關問題的'能力和興趣。

  教學重點:

  經歷鴿巢原理的探究過程,初步了解鴿巢原理。

  教學難點:

  理解“總有”“至少”的意義,理解鴿巢原理,并對一些簡單的實際問題加以模型化。

  教學準備:

  多媒體課件、撲克牌、3個筆筒。

  教學過程:

  一、魔術游戲激趣導入:

  1、老師這個魔術需要請1名同學來配合,誰愿意?

  向學生介紹這是一幅撲克牌,取出大小王、還剩52張,(請學生隨意抽出5張牌)好,見證奇跡的時刻到了,你手里有5張牌至少有兩張牌的花色是一樣的。(學生打開牌讓大家看)

  課件出示:至少有2張是同一花色。“至少”表示什么意思?

  引導:老師為什么能作出準確的判斷呢?因為這個有趣的魔術中蘊含著一個數學原理,這節課我們就一起來研究這個問題。

  板演:鴿巢問題

  二、合作探究

  (一)列舉法:

  課件出示:同學們,如果把3支筆放進2個筆筒中,會有哪幾種擺放的結果?

  找一組學生上前實物模擬操作擺放情況。

  師問:同學們,你們誰能把擺放的情況用“總有……至少……”這個句式來概括出來嗎?“總有”、“至少”分別又是什么意思呢?

  概括得出:總有1個筆筒至少放2支筆。(及時肯定學生們的回答:你的邏輯思維能力真強)

  課件出示:如果把4支筆放進3個筆筒中呢?快和你的小伙伴們交流探索一下:

  1、分組探究,教師巡視指導。

  預設學生會出現以下幾種情況:

  (1)實物模擬

  (2)圖示

  (3)數的分解

  2、學生匯報,講臺展示。

  3、學生概括得出:總有1個筆筒至少放2支筆。

  4、小結:剛才我們通過以上方法列舉出所有情況驗證了結論,這種方法叫“列舉法”。

  (二)假設法

  師問:同學們,將100支筆放99個筆筒,總有1個筆筒至少放進幾支筆呢?

  追問有勇氣列舉嗎?預設:沒有勇氣列舉

  我們能不能找到一種更為直接的方法,找到“至少數”呢?

  課件出示:4支筆放3個筆筒,總有1個筆筒至少放2支筆。這句話能快速得到驗證嗎?

  1、引導學生思考:回顧下“至少”的意思,為保障每個筆筒都盡量少,不能出現某個筆筒特別多的情況,我們要把怎樣分?學生嘗試作答:

  生:如果每個筆筒里放1支筆,放了3支,剩下的1支不管放進哪一個筆筒里,總有一個筆筒里至少有2支筆。既而教師圖示。(及時肯定學生的探究能力)

  2、引伸拓展:

  (1) 5支筆放進4個筆筒,總有一個筆筒中至少放進( )支筆。

  (2) 6支筆放進5個筆筒,總有一個筆筒中至少放進( )支筆。

  (3) 100支筆放進99個筆筒,總有一個筆筒至少放進( )支筆。

  也就是說:有n+1支筆放進n個筆筒中,總有一個筆筒至少放進2支筆。

  3、小結:這種先假設按平均分,然后再分配剩余量的方法叫做“假設法”。

  教師追問:列舉法和假設法的優缺點是什么?

  學生總結出:

  列舉法優點:能夠做到不重復,不遺漏,結果一目了然。缺點:局限性,擺放更多筆浪費時間,效率低。

  假設法的優點是:簡潔、迅速解決問題,更具有一般性。

  三、練習鞏固,解決問題

  1、5只鴿子飛進3個鴿籠,總有1個鴿籠至少飛進了幾只鴿子?為什么?

  2、同學們理解上面撲克牌的原理了嗎?

  四、鴿巢原理的由來

  最早指出這個數學原理的是19世紀的德國數學家狄利克雷,這個原理被稱為“狄利克雷原理”,又因為在講述這個原理是,人們經常以鴿巢、抽屜為例,所以它往往也被稱為“鴿巢原理”和“抽屜原理”。

  五:板書設計

  鴿巢問題

  “總是”“至少”

  列舉法

  假設法平均分

  《鴿巢問題第1課時》教學設計 5

  一、教學內容

  教材第6

  二、教學目標

  1、經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢問題”解決簡單的實際問題。

  2、通過操作發展學生的類推能力,形成比較抽象的數學思維。

  3、通過“鴿巢問題”的靈活應用感受數學的魅力。

  三、教學重難點

  重點:經歷“鴿巢問題”的'探究過程,初步了解“鴿巢問題”。難點:理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。

  四、教學準備

  多媒體課件

  紙杯

  吸管

  五、教學過程

  一、課前游戲引入。

  師:孩子們,你們知道劉謙嗎?你們喜歡魔術嗎?今天老師很高興和大家見面,初次見面,所以老師特地練了個小魔術,準備送給大家做見面禮。孩子們,想不想看老師表演一下?

  生:想

  師:我這里有一副撲克牌,我找五位同學每人抽一張。老師猜。(至少有兩張花色一樣)

  師:老師厲害嗎?佩服嗎?那就給老師點獎勵吧!想不想學老師的這個絕招。下面老師就教給你這個魔術,可要用心學了。有沒有信心學會?

  二、通過操作,探究新知

  (一)探究例1

  1、研究3根小棒放進2個紙杯里。

  (1)要把3枝小棒放進2個紙杯里,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。

  (2)反饋:兩種放法:(3,0)和(2,1)。(教師板書)

  (3)從兩種放法,同學們會有什么發現呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發現的?(說得真有道理)

  (4)“總有”什么意思?(一定有)

  (5)“至少”有2枝什么意思?(不少于2枝)

  小結:在研究3根小棒放進2個紙杯時,同學們表現得很積極,發現了“不管怎么放,總有一個紙杯里放進2根小棒)

  2、研究4根小棒放進3個紙杯里。

  (1)要把4根小棒放進3個紙杯里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。

  (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

  (3)從四種放法,同學們會有什么發現呢?(總有一個紙杯里至少有2根小棒)

  (4)你是怎么發現的?

  (5)大家通過枚舉出四種放法,能清楚地發現“總有一個紙杯里放進2根小棒”。

  師:大家看,全放到一個杯子里,就有四個了。太多了。那怎么樣讓每個杯子里都盡可能少,你覺得應該要怎樣放?(小組合作,討論交流)(每個紙杯里都先放進一枝,還剩一枝不管放進哪個紙杯,總會有一個紙杯里至少有2根小棒)(你真是一個善于思想的孩子。)

  (6)這位同學運用了假設法來說明問題,你是假設先在每個紙杯里里放1根小棒,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)

  (7)誰能用算式來表示這位同學的想法?(4÷3=1…1)商1表示什么?余數1表示什么?怎么辦?

  (8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是2枚舉了所有放法,找規律,二是采用了“假設法”來說明理由,你覺得哪種方法更明了更簡單?

  3、類推:把5枝小棒放進4個紙杯,總有一個紙杯里至少有幾根小棒?為什么?

  把6枝小棒放進5個紙杯,總有一個紙杯里至少有幾根小棒?為什么?

  把7枝小棒放進6個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?

  把100枝小棒放進99個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?

  4、從剛才我們的探究活動中,你有什么發現?(只要放的小棒比紙杯的數量多1,總有一個紙杯里至少放進2根小棒。)

  5、小結:剛才我們分析了把小棒放進紙杯的情況,只要小棒數量多于紙杯數量時,總有一個紙杯里至少放進2根小棒。

  這就是今天我們要學習的鴿巢問題,也叫抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯系吧?小棒相當于我們要準備放進抽屜的物體,那么紙杯就相當于抽屜了。如果物體數多于抽屜數,我們就能得出結論“總有一個抽屜里放進了2個物體。

  小練習:

  1、任意13人中,至少有幾人的出生月份相同?

  2、任意367名學生中,至少有幾名學生,他們在同一天過生日?為什么?

  3、任意13人中,至少有幾人的屬相相同?”

  6、剛才我們研究的是小棒數比紙杯多1的情況,如果小棒比紙杯數多2呢?多3呢?是不是也能得到結論:“總有一個紙杯里至少有2根小棒。”

  《鴿巢問題第1課時》教學設計 6

  教學內容

  人教版教材小學數學六年級第十二冊“數學廣角”例1及相關內容。

  教學目標

  (1)經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢問題”解決簡單的實際問題。

  (2)通過操作發展學生的類推能力,形成比較抽象的數學思維。

  (3)通過“鴿巢問題”的靈活應用感受數學的魅力。

  教學重點

  經歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。

  教學難點

  理解“鴿巢問題”里的先“平均分”,再得出至少數的過程。并對一些簡單實際問題加以“模型化”。

  教具、學具準備

  若干個紙杯(每小組3個)、筆(每小組4根)、撲克牌1副

  教學過程

  一、撲克魔術導入。

  請同學們看我表演一個“魔術”。拿出一副撲克牌(去掉大小王)52張中有四種花色,請一個同學幫我從中隨意抽5張牌,無論怎么抽,總有一種花色至少有2張牌是同花色的你相信嗎?

  你能說明其中的'道理嗎?老師不用看就知道“一定有2張牌是同花色的對不對?假如請這位同學再抽取,不管怎么抽,總有2張牌是同花色的,同意么?

  其實這里蘊含了一個有趣的數學原理,這節課我們一起探究這個數學原理?(板書課題:鴿巢問題)

  二、學習例1,列舉探究

  1、用枚舉法深入研究4支筆放進3個紙杯里。

  (1)要把4支筆放進3個紙杯里(紙杯代替),有幾種放法?請同學們想一想,小組擺一擺,記一記;再把你的想法在小組內交流。(提醒學生左3右1與左1右3是同一種方法——不管杯子的順序)

  (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)

  (3)觀察這四種放法,同學們有什么發現呢?(不管怎么放,總有一個紙杯里至少放有2枝鉛筆)讓孩子們充分地說。

  板書:枚舉法

  (4)“總有”什么意思?(一定有)

  (5)“至少”有2本是什么意思?(最少是2本,2本或者2本以上)。

  2、假設法

  ①還可以這樣想:先放3支,在每個筆筒中平均放1支,剩下的1支再放進其中的一個筆筒。所以至少有一個筆筒中有2支鉛筆

  ②思考:為什么要先在每個筆筒里平均放一支呢?

  ③繼續思考:

  6只鉛筆放進5個筆筒,總有一個筆筒至少放進()支鉛筆。

  10只鉛筆放進9個筆筒,總有一個筆筒至少放進()支鉛筆。

  100只鉛筆放進99個筆筒,總有一個筆筒至少放進()支鉛筆。

  ④通過剛才的分析,你有什么發現?誰能試著說一說?

  只要鉛筆數比筆筒多1,總有一個筆筒里至少放進2支鉛筆。

  3、介紹鴿巢問題的由來。

  (1)抽屜原理是組合數學中的一個重要原理,它最早由德國數學家狄利克雷(Dirichlet)提出并運用于解決數論中的問題,所以該原理又稱“狄利克雷原理”。

  (2)總結:把m個物體任意放進n個抽屜中,(m>n,m和n是非0自然數),若m÷ n= 1……a,那么一定有一個抽屜中至少放進了2個物體。

  三、鞏固練習:

  1、5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?

  2、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?

  四、總結全課:這節課你有哪些收獲呢?

  (上面點學生說一說,不全的老師補充)

  五、設疑留懸念。

  如果是把7本書放進3個抽屜里,那么總有一個抽屜至少放進()本書。

  如果有8本書呢?

  六、作業布置

  1、完成教材課后習題p71第5、6題;

  2、完成練習冊本課時的習題。

  《鴿巢問題第1課時》教學設計 7

  教學內容:

  教科書第68頁例1。

  教學目標:

  1、使學生理解“抽屜原理”(“鴿巢原理”)的基本形式,并能初步運用“抽屜原理”解決相關的實際問題或解釋相關的現象。

  2、通過操作、觀察、比較、說理等數學活動,使學生經歷抽屜原理的形成過程,體會和掌握邏輯推理思想和模型思想,提高學習數學的興趣。

  教學重點:

  經歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。

  教學難點:

  理解“抽屜原理”,并對一些簡單的實際問題加以“模型化”。

  教學模式:

  學、探、練、展

  教學準備:

  多媒體課件一套

  教學過程:

  一、游戲導入

  1、師生玩“撲克牌魔術”游戲。

  (1)教師介紹:一副牌,取出大小王,還剩下52張牌,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?

  (2)玩游戲,組織驗證。

  通過玩游戲驗證,引導學生體會到:不管怎么抽,總有兩張牌是同花色的。

  2、導入新課。

  剛才這個游戲當中,蘊含著一個數學問題,這節課我們就一起來研究這個有趣的問題。

  二、呈現問題,探究新知

  課件呈現:例1、把4支鉛筆放進3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。為什么呢?

  課件出示自學提示:

  (1)“總有”和“至少”是什么意思?

  (2)把4支鉛筆放進3個筆筒中,可以怎么放?有幾種

  不同的放法?(請大家用擺一擺、畫一畫、寫一寫等方法把自己的想法表示出來。)

  (3)把4支鉛筆放進3個筆筒中,不管怎么放總有一個筆筒至少放進xxx支鉛筆?

  (一)自主探究,初步感知

  1、學生小組合作探究。

  2、反饋交流。

  (1)枚舉法。

  (2)數的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

  (3)假設法。

  師:除了像這樣把所有可能的'情況都列舉出來,還有沒有別的

  方法也可以證明這句話是正確的呢?

  生:我是這樣想的,先假設每個筆筒中放1支,這樣還剩1支。這時無論放到哪個筆筒,那個筆筒中就有2支了。

  師:你為什么要先在每個筆筒中放1支呢?

  生:因為總共有4支,平均分,每個筆筒只能分到1支。

  師:你為什么一開始就平均分呢?(板書:平均分)

  生:平均分就可以使每個筆筒里的筆盡可能少一點。

  師:我明白了。但是這樣只能證明總有一個筆筒中肯定有2支筆,怎么能證明至少有2支呢?

  生:平均分已經使每個筆筒里的筆盡可能少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。

  (4)確認結論。

  師:到現在為止,我們可以得出什么結論?

  生(齊):把4支鉛筆放進3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。

  (二)提升思維,構建模型

  1、師:(口述)那要是

  (1)把5支鉛筆放進4個筆筒中,不管怎么放,總有一個筆筒里至少有xx支鉛筆。

  (2)把6支鉛筆放進5個筆筒中,不管怎么放,總有一個筆筒里至少有xx支鉛筆。

  (3)10支鉛筆放進9個筆筒中呢?100支鉛筆放進99個筆筒中

  2、建立模型。

  師:通過剛才的分析,你有什么發現?

  生:只要鉛筆的數量比筆筒的數量多1,那么總有一個筆筒至少要放進2支筆。

  師:對。鉛筆放進筆筒我們會解釋了,那么有關鴿子飛入鴿巢的問題,大家會解釋嗎?(課件出示)

  師:以上這些問題有什么相同之處呢?

  生:其實都是一樣的,鴿巢就相當于筆筒,鴿子就相當于鉛筆。

  師:像這樣的數學問題,我們就叫做“鴿巢問題”或“抽屜問題”,它們里面蘊含的這種數學原理,我們就叫做“鴿巢問題”或“抽屜問題”。(揭題)

  三、基本練習。

  四、拓展提升。

  五、課堂小結。

  六、作業布置。

  完成課本第71頁,練習十三,第1題。

  《鴿巢問題第1課時》教學設計 8

  教學內容

  人教版小學數學六年級下冊教材第68~69頁。

  教材分析:

  鴿巢問題又稱抽屜原理或鴿巢原理,它是組合數學中最簡單也是最基本的原理之一,從這個原理出發,可以得出許多有趣的結果。這部分教材通過幾個直觀的例子,借助實際操作,向學生介紹了“鴿巢問題”。學生在理解這一數學方法的基礎上,對一些簡單的實際問題“模型化”,會用“鴿巢問題”解決問題,促進邏輯推理能力的發展。

  學情分析:

  “鴿巢問題”的理論本身并不復雜,對于學生來說是很容易的。但“鴿巢問題”的應用卻是千變萬化的,尤其是“鴿巢問題”的逆用,學生對進行逆向思維的思考可能會感到困難,也缺乏思考的方向,很難找到切入點。

  設計理念:

  在教學中,讓學生經歷將具體問題“數學化”的過程,初步形成模型思想,體會和理解數學與外部世界的緊密聯系,發展抽象能力、推理能力和應用能力,這是《標準》的重要要求,也是本課的編排意圖和價值取向。

  教學目標:

  1、知識與技能:通過操作、觀察、比較、推理等活動,初步了解鴿巢原理,學會簡單的鴿巢原理分析方法,運用鴿巢原理的知識解決簡單的實際問題。

  2、過程與方法:在鴿巢原理的探究過程中,使學生逐步理解和掌握鴿巢原理,經歷將具體問題數學化的過程,培養學生的模型思想。

  3、情感態度:通過對鴿巢原理的靈活運用,感受數學的魅力,體會數學的價值,提高學生解決問題的能力和興趣。

  教學重點:

  理解鴿巢原理,掌握先“平均分”,再調整的方法。教學難點:理解“總有”“至少”的意義,理解“至少數=商數+1”。教學準備:多媒體課件、合作探究作業紙。

  教學過程:

  一、游戲導課:

  1、游戲:

  一副撲克牌取出大小王,還剩52張牌。

  自己動手洗牌。隨意抽出五張牌,至少有兩張牌是相同的花色。自己想想為什么會這樣呢?

  2、把3枝筆放到2個筆筒里,不管怎么放,總有一個筆筒里至少有2枝筆。 “不管怎么放”也就是說放的情況X“總有一個”也就是指X的.意思。 “至少”也就是指X的意思。

  二、合作探究

  (一)枚舉法

  4支鉛筆放進3個筆筒,總有一個筆筒至少放了3支鉛筆。

  1、小組合作:

  (1)畫一畫:借助“畫圖”或“數的分解”的方法把各種情況都表示出來;

  (2)找一找:每種擺法中最多的一個筆筒放了幾支,用筆標出;

  (3)我們發現:總有一個筆筒至少放進了(?)支鉛筆。

  2、學生匯報,展臺展示。

  交流后明確:

  (1)四種情況:(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

  (2)每種擺法中最多的一個筆筒放進了:4支、3支、2支。

  (3)總有一個筆筒至少放進了2支鉛筆。

  3、小結:剛才我們通過“畫圖”、“數的分解”兩種方法列舉出所有情況驗證了結論,這種方法叫“枚舉法”,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論,找到“至少數”呢?

  (二)假設法

  1、學生嘗試回答。(如果有困難,也可以直接投影書中有關“假設法”的截圖)

  2、學生操作演示,教師圖示。

  3、語言描述:把4支鉛筆平均放在3個筆筒里,每個筆筒放1支,余下的1支,無論放在哪個筆筒,那個筆筒就有2支筆,所以說總有一個筆筒至少放進了2支筆。(指名說,互相說)

  4、引導發現:

  (1)這種分法的實質就是先怎么分的?(平均分)

  (2)為什么要一開始就平均分?(均勻地分,使每個筆筒的筆盡可能少一點,方便找到“至少數”),余下的1支,怎么放?(放進哪個筆筒都行)

  (3)怎樣用算式表示這種方法?(4÷3=1支……1支? 1+1=2支)算式中的兩個“1”是什么意思?

  5、引伸拓展:

  (1)5只鴿子飛進4個鴿籠,總有一個鴿籠至少飛進(?)只鴿子。

  (2)6本書放進5個抽屜里,總有一個抽屜至少放進(?)本書。(3)100支筆放進99個筆筒,總有一個筆筒至少放進(?)支筆。學生列出算式,依據算式說理。

  6、發現規律:剛才的這種方法就是“假設法”,它里面就蘊含了“平均分”,我們用有余數的除法算式把平均分的過程簡明的表示出來了,現在會用簡便方法求“至少數”嗎?

  (三)建立模型

  1、出示題目:17支筆放進3個文具盒?17÷3=5支……2支學生可能有兩種意見:總有一個文具盒里至少有5支,至少6支。針對兩種結果,各自說說自己的想法。

  2、小組討論,突破難點:至少5只還是6只?

  3、學生說理,邊擺邊說:先平均分給每個文具盒5支筆,余下2只再平均分放進2個不同的文具盒里,所以至少6只。(指名說,互相說)

  4、質疑:為什么第二次平均分?(保證“至少”)

  5、強化:如果把筆和筆筒的數量進一步增加呢?

  (1)28支筆放進11個筆筒,至少幾支放進同一個筆筒?28÷11=2(支)…6(支)? 2+1=3(支)

  (2)77支筆放進13個筆筒,至少幾支放進同一個筆筒?77÷13=6(支)…12(支)? 6+1=7(支)

  6、對比算式,發現規律:先平均分,再用所得的“商+1”

  7、強調:和余數有沒有關系?

  學生交流,明確:與余數無關,不管余多少,都要再平均分,所以就是加1

  8、引申拓展:剛才我們研究了筆放入筆筒的問題,那如果換成鴿子飛進鴿籠你會解答嗎?把蘋果放入抽屜,把書放入書架,高速路口同時有4輛車通過3個收費口……,類似的問題我們都可以用這種方法解答。

  三、鴿巢原理的由來

  微視頻:同學們從數學的角度分析了這些事情,同時根據數據特征,發現了這些規律。你們發現的這個規律和一位數學家發現的規律一模一樣,只不過他是在150多年前發現的,你們知道他是誰嗎?——德國數學家?“狄里克雷”,后人們為了紀念他從這么平凡的事情中發現的規律,就把這個規律用他的名字命名,叫“狄里克雷原理”,由于人們對鴿子飛回鴿巢這個引起思考的故事記憶猶新,所以人們又把這個原理叫做“鴿巢原理”,它還有另外一個名字叫“抽屜原理”。

  四、解決問題

  1、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?

  2、11只鴿子飛進了4個鴿籠,總有一個鴿籠至少飛進了3只鴿子。為什么?

  3、5個人坐4把椅子,總有一把椅子上至少坐2人。為什么?

  4、把15本書放進4個抽屜中,不管怎么放,總有一個抽屜至少有4本書,為什么?

  《鴿巢問題第1課時》教學設計 9

  一、教學內容:

  教科書第68頁例1。

  二、教學目標:

  (一)知識與技能:通過數學活動讓學生了解鴿巢原理,學會簡單的鴿巢原理分析方法。

  (二)過程與方法:結合具體的實際問題,通過實驗、觀察、分析、歸納等數學活動,讓學生通過獨立思考與合作交流等活動提高解決實際問題的能力。

  (三)情感態度和價值觀:在主動參與數學活動的過程中,讓學生切實體會到探索的樂趣,讓學生切實體會到數學與生活的緊密結合。

  三、教學重難點

  教學重點:經歷鴿巢問題的探究過程,初步了解鴿巢原理,會用鴿巢原理解決簡單的實際問題。

  教學難點:通過操作發展學生的類推能力,形成比較抽象的數學思維。

  四、教學準備:

  多媒體課件。

  五、教學過程

  (一)候課閱讀分享:

  同學們,大家好,課前老師讓大家收集了有關“鴿巢問題”的閱讀資料,現在就某某同學的閱讀在這候課的幾分鐘內與大家分享一下。

  (二)激情導課

  好,我們班人數已到齊,從今天開始,我們學習第五單元鴿巢問題,這節課通過數學活動我們來了解鴿巢原理,學會簡單的鴿巢原理分析方法。你準備好了嗎?好,我們現在開始上課。

  (三)民主導學

  1、請同學們先來看例1。把4支鉛筆放進3個筆筒中,不管怎么放,總有1個筆筒里至少有2只鉛筆。

  請你再把題讀一次,這是為什么呢?

  要想解決這個問題,我們首先要理解,總有一個筆筒里至少有2支鉛筆這句話。我們再思考這一句話中,總有和至少是什么意思?

  對總有就是一定的意思。至少就是最少的'意思至少有兩支鉛筆,就是說最少有兩支鉛筆。或者是說,鉛筆的支數要大于或等于兩支。

  那你能現在說說,總有一個筆筒里至少有兩支鉛筆這句話的意思了嗎?對,這句話就是說,一定有一個筆筒里最少有兩支鉛筆,或者是說一定有一個筆筒里的鉛筆數是大于或等于兩支的。你說對了嗎?

  課前老師已經讓大家完成前置性作業,就“4支鉛筆放進3個筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!

  方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個數。我們發現有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。

  剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數學中我們叫它“枚舉法”。

  那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個情況呢?

  方法二:用“假設法”證明。

  對,我們可以這樣想,如果在每個筆筒中放1支,先放3支,剩下的1支就要放進其中的一個筆筒。這時無論放在哪個筆筒,那個筆筒中就有2支,所以總有一個筆筒中至少放進2支鉛筆。(平均分)

  方法三:列式計算

  你能用算式表示這個方法嗎?

  學生列出式子并說一說算式中商與余數各表示什么意思?

  2、把5支鉛筆放進4個筆筒,總有一個筆筒里至少有2支鉛筆。

  這道題大家可以用幾種方法解答呢?

  3種,枚舉法、假設法、列式計算。

  3、100支鉛筆,放進99個筆筒,總有一個筆筒至少要放進多少支鉛筆呢?

  還能有枚舉法嗎?對,不能,枚舉法雖然比較直觀,但數據大的時候用起來比較麻煩。可以用假設法和列式計算。

  4、表格中通過整理,總結規律

  你發現了什么規律?

  當要分的物體數比鴿巢數(抽屜數)多1時,至少數等于2“商+1”。

  5、簡單了解鴿巢問題的由來。

  經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我把我們的這一發現,稱為筆筒問題。但其實最早發現這個規律的不是我們,而是德國的一個數學家“狄里克雷”。

  (四)檢測導結

  好,我們做幾道題檢測一下你們的學習效果。

  1、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?

  2、一副牌,取出大小王,還剩52張,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?

  3、5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?

  4、育新小學全校共有2192名學生,其中一年級新生有367名同學是2008年出生的,這個學校一年級學生2008年出生的同學中,至少有幾個人出生在同一天?

  (五)全課總結今天你有什么收獲呢?

  (六)布置作業

  作業:兩導兩練第70頁、71頁實踐應用1、4題。

  《鴿巢問題第1課時》教學設計 10

  教學目標:

  1、理解簡單的鴿巢問題及鴿巢問題的一般形式,引導學生采用操作的方法進行枚舉及假設法探究“鴿巢問題”。

  2、體會數學知識在日常生活中的廣泛應用,培養學生的探究意識。

  教學重點:了解簡單的鴿巢問題,理解“總有”和“至少”的含義。

  教學難點:運用“鴿巢原理”解決相關的實際問題,理解數學中的優化思想。

  教學過程:

  一、游戲激趣導入新課

  1、同學們看,老師手中拿的是什么?拿出大王和小王,剩下的牌中共有幾種花色?

  2、現在我們一起來玩猜花色的游戲,請5位同學到前面每人隨意抽一張紙牌,抽完后不要讓老師看到。

  3、抽后老師大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同(課件出示)。

  4、有些同學一定覺得老師只是湊巧猜對了,我們再抽一次,老師還大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同。如果老師猜對了,就給老師點掌聲。

  5、如果老師再換5名同學來抽牌,我還敢確定的說至少有2張牌的'花色相同,這是為什么呢?其實這里面蘊藏著一個有趣的數學原理——抽屜原理,也叫鴿巢原理或鴿巢問題,這節課我們就一起來研究這個問題。(板書課題)

  (設計意圖:通過這個游戲激發學生學習本節課的好奇心,也使學生感受到數學和生活中的聯系,知道學習本節課的重要性。)

  二、呈現問題自主探究

  1、小紅在整理自己的學習用品是有這樣的發現(課件出示:把4支鉛筆放進3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。)學生齊讀。

  2、在這句話中你有什么不理解的嗎?學生提出不理解的詞語。

  (1)不管:隨意,想想怎么放就怎么放。

  (2)總有:一定有。

  (3)至少:最少,最起碼。

  師提問:最少2支指的是幾支呢?具體來說。

  2、把整句話翻譯過來再說一遍。

  (設計意圖:讓學生充分理解這句話的意思,為接下來的研究做好鋪墊。)

  2、你覺得這句話說得對嗎?給同學們1分鐘時間同學生靜靜思考一下。

  3、現在同學用擺一擺、畫一畫、寫一寫等方法來驗證這句話,老師出示自己的溫馨提示。(課件出示:溫馨提示:選擇自己喜歡的方式驗證,比如,同桌合作,用紙杯代替筆筒,用鉛筆擺一擺,一人擺,一人記錄。(注意:不考慮順序。)

  4、學生匯報驗證的方法:

  生1:利用圖片來列舉出幾種放法

  教師提問:我們來看這位同學的擺法,憑什么說“總有一個筆筒里至少有2支鉛筆”呢?比2支多也可以嗎?

  教師小結:非常好,我們在觀察這幾種擺法,把符合要求的筆筒用彩色筆標出來:所以說不管怎么放總有一支筆筒里至少有2支鉛筆。

  生2:利用數字方法列舉出幾種方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)

  我們一起圈出每種分法不少于2的數字。(表揚生2,方法更簡單一些)

  5、同學們像剛才把所有中情況都列舉出來,這種方法就叫做列舉法或枚舉法。(板書)

  6、除了這種枚舉法,還有沒有別的方法也能證明這句話是對的。

  生:先假設每個筆筒中放1支鉛筆,這樣還剩1支鉛筆,這時無論放到哪個筆筒,哪個筆筒就是2支鉛筆了,所以我認為是對的。

  師追問:你為什么要現在每個筆筒里放1支呢?

  生:因為一共有4支筆,平均分后每個筆筒只能分到一支。

  師追問:那為什么要一開始就去平均分呢?

  生:平均分就可以使每個筆筒中的筆盡量少一點,如果這樣都能符合要求,其他中情況都能符合要求了。

  (設計意圖:教師的追問讓學生更明確為什么要平均分,平均分的好處是什么。)

  7、這位同學的想法真是太與眾不同了,我們為他鼓掌,誰聽懂了他的想法,把他的想法在復述一遍。

  8、想這位同學的方法就是假設法。(板書:假設法)

  9、到現在為止,我們可以得出結論了。

  三、提升思維構建模型

  1、剛才我們通過不同的方法驗證了這句話是正確的,現在老師把題目改一改,同學們看看還對不對了,為什么?(課件出示:把5支鉛筆放進4個筆筒里,不管怎么放,總有一個筆筒里至少有2支鉛筆。)生回答并說明理由。

  2、課件繼續出示:

  (1)把6個蘋果放進5個盤子里呢?

  (2)把10本書放進9個抽屜中呢?

  (3)把100只鴿子放進99個籠子中呢?

  3、我們為什么都采用了假設法來分析,而不是畫圖用枚舉法呢?(枚舉法雖然直觀,但是有一定的局限性,假設法更具有一般性)

  (設計意圖:通過出示更大的數,讓學生感受到用假設法的方便性,實用性,同時引出的優化的思想。)

  4、在數學課堂上我們通常采用更便于我們解決的方法來解決問題,這是一種優化的思想。(板書:優化思想)

  5、引出物體數、鴿巢數、至少數,學生觀察,你有什么發現嗎?(當物體數比鴿巢數多1時,總有一個鴿巢里至少有2個物體。)

  6、回過頭來我們看課前老師猜測的撲克牌的游戲,誰能解釋一下是怎么回事呢?看來并不是老師神奇,而是鴿巢問題神奇啊。

  7、同學們今天的發現是德國數學家狄利克雷最早提出的:課件介紹有關鴿巢問題的來歷。

  四、解決問題練習鞏固

  通過學生的努力,我們一起研究出鴿巢問原理,現在老師出幾道題看同學們是否真的學會了。

  1、5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?

  2、把()本書放進3個抽屜,不管怎么放,總有一個抽屜至少放進2本書。()中能填幾呢?

  (設計意圖:習題2鍛煉學生的逆向思維,同時也為下節課的學習埋下了伏筆。)

  五、課堂總結

  這節課的探究學習中,我們一起經歷了與德國數學家狄利克雷一樣的偉大發現,你有什么收獲呢?

【《鴿巢問題第1課時》教學設計】相關文章:

《鴿巢問題》教學設計03-09

鴿巢問題教學設計10-06

鴿巢問題教學設計06-30

鴿巢問題教學設計10-11

《鴿巢問題》優秀教學設計03-05

數學廣角“鴿巢問題”教學設計03-31

鴿巢問題優質教學設計范文07-08

鴿巢問題教學課件01-25

《鴿巢問題》教學設計(通用8篇)08-01

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
资源站色在线观看精品 | 亚洲国产精品高清线久久AV | 中文字幕乱老妇人视频 | 婷婷综合激情亚洲狠狠首页 | 亚洲人成网站在线播放动漫 | 一本大道香蕉网站日本 |