因數和倍數教學設計
作為一名辛苦耕耘的教育工作者,常常要根據教學需要編寫教學設計,教學設計是對學業業績問題的解決措施進行策劃的過程。那要怎么寫好教學設計呢?下面是小編為大家收集的因數和倍數教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。
因數和倍數教學設計1
教學內容:教科書12---16頁的學習內容
教學目標
通過對比學習,加深因數和倍數意義的理解,通過在意義、找的方法以及計數等幾個方面對比,進一步理清因數與倍數的區別于聯系,準確把握因數與倍數。
教學重點:因數與倍數的對比。
教學難點:用準確語言表達。
教學準備:實物投影
教學活動
(一 )基礎訓練
【口答】
下面的說法對碼?如果不對,請改正。
(1)32÷4=8,所以42是倍數,4是因數
(2)12的因數只有2、3、4、6、12
(3)1是1,2,3,…的因數
(4)60的最大因數和最小倍數都是60
(5)5一共有10000個倍數
(6)一個數的倍數一定大于它的因數
【解答題】
因數能否數完?倍數呢?
(二) 新知學習
【典型例題】
1.分別找出16的因數和倍數
2.仔細想想,找出16的所有因數和倍數的感受相同碼?
2.填表。
不同方面聯系
意義尋找方法能否找完有無最大與最小表示
因數
倍數
(三) 鞏固練習(10題)
【基礎練習】
1.選擇正確答案的序號填在括號內。
(1)下面算式中能表示63是7的倍數的算式是()
① 7×9=63 ② 63÷8=7……7 ③ 63÷21=3
(2)9的因數有( )個
① 2 ② 3③ 4
(3)不能夠表示出“倍數”與“因數”關系的算式是()
① 19÷3 = 6……1② 24÷6=4 ③ 17×4=68
【提高練習】
1. 按要求寫數
6的.倍數(寫出5個) 32的所有因數 120的所有因數
2.練一練第7題。
教師可以鼓勵學生課后查閱相關資料,把數學學習由課堂引申到課外。
通過本題計算在月球和火星上的體重,激發學生的好奇心,進行保護地球的環保教育
3.填表。
(1)48個同學表演團體操,把隊伍的排列情況填寫完整。
排數123456789
每排人數4824
每排都是48的因數碼?
(2)乘坐碰碰車每人應付8元,你能把表填完整碼?
乘坐人數12345……
應付元數816
【拓展練習】
1.填數。
2.五年(1)班同學參加植樹活動,要植樹24棵,如果要求每行植樹的棵樹相同,有幾種不同的植法?如果要50棵樹呢?
向學生簡介林可以植樹的好處,凈化空氣,還可以降低噪音,美化環境的功效。
(五)教學效果評價(小測題2—3題)
1.24的因數有哪些?
2.36是哪些數的倍數?
課后反思:
通過引導學生從一個數的倍數的定義出發,推出該數和任意非零自然數之積都是該數的倍數。2的倍數也就是2和任意非零自然數的乘積,學生在列乘法算式時發現這樣的算式是列不完的,總結出2的倍數的個數是無限的。進而推倒出:一個數的倍數的個數是無限的。只有最小的倍數,沒有最大的倍數。學生親歷了知識的形成過程,既探究了知識,又形成了總結概括的能力。
因數和倍數教學設計2
XXXX小學 XXXXX
教學內容:教材例1、例2
教學目標
1.知識與技能:讓學生初步理解因數和倍數的概念,掌握找因數和倍數的方法。學會用列舉法找一個數的因數和倍數。
2.過程與方法:借助直觀圖,先引導學生觀察后列出乘法算式,最后結合乘法算式來理解因數與倍數的概念。
3.情感、態度與價值觀:理解因數和倍數的意義能及兩者之間相互依存的關系。
教學重點:理解因數和倍數的概念。
教學難點:掌握求一個數的因數和倍數的方法。
教學方法:啟發式教學法、指導自主學習法。
教學準備:多媒體。
教學過程:
一、新課導入:
1.出示教材第5頁例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)觀察: 引導觀察例1中的算式,你發現了什么?(都是除法算式)
(2)分類:你能把上面的除法算式分類嗎?
學生分類后,教師組織學生交流,引導學生根據是否整除分為以下兩類
第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入課題。這節課我們就來學習有關數的整除的相關知識。(板書課題:因數和倍數)
二、探索新知:
(一)、明確因數與倍數的意義。(教學例1)
1. 教師引導。教師指出:在整數除法中,如果商是整數而沒有余數,我們
就說被除數是除數和商的倍數,除數和商是被除數的因數。例如:12÷2=6,我們說12是2和6的倍數,2和6是12的因數。
2. 學生嘗試。
教師讓學生說一說第一類的每個算式中,誰是誰的因數?誰是誰的倍數?先同桌互相說一說,再組織全班交流。
3. 深化認識。師:通過剛才的說一說活動,你發現了什么?
引導學生體會:因數和倍數雖是兩個不同的概念,但又是相互依存的,二者不能單獨存在。我們不能說誰是因數,誰是倍數,而應該說誰是誰的因數,誰是誰的倍數。例如,30÷6=5,30是6和5的倍數,6和5是30的因數。教師強調,并讓學生注意:為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括O)。
4. 即時練習。指導學生完成教材第5頁“做一做”。
小結:如果a÷b =c(a,b,c均是不為0的自然數),那么a就是b和c的倍數,b和c是a的因數。因數和倍數是相互依存的。
(二)、探索找一個數因數的方法。(教學例2)
1. 出示例2:18的.因數有哪幾個?
(1) 學生獨立思考。
師:根據因數和倍數的意義,想一想18除以哪些整數的結果是整數。
18÷1=18,l和18是18的因數;18÷2=9, 2和9是18的因數;18÷3=6, 3和6是18的因數。引導學生把18的因數按從小到大的順序排列,每兩個因數之間用逗號隔開,全部寫完后用句號結束,即18的因數有:1,2,3,6,9 ,18。
(2)小組合作交流。交流時教師要讓學生說明找的方法,引導學生認識:只要想18除以哪些整數的結果是整數,并且要從1開始,一對一對地找,避免遺漏。如果學生還有其他想法,只要合理,教師都應給予肯定。
(3)采用集合圖的方法。
教師指出也可用右面的集合圖來表示18的全部因數。明確:用圖示法表示18的因數時,先畫一個橢圓,在橢圓的上面寫上“18的因數”,再把18的因數按從小到大的順序有規律地寫在橢圓里,每兩個因數之間也用逗號隔開,全部寫完后不加句號。
(4)練習。讓學生找出30的因數和36的因數,并組織交流。
30的因數有1,2,3,5,6,10,15,30。
36的因數有1,2,3,4,6,9,12,18,36。
三、鞏固練習
指導學生完成教材“練習二”第1、6題。學生獨立完成全部練習后教師組織學生進行集體證正。
四、課堂小結
師:通過本節課的學習,你有什么收獲?
板書設計:
因數和倍數
12÷2=6 12是2和6的倍數
2和6是12的因數 18的因數有1,2,3,6,9,18。
一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
作業:教材第7頁“練習二”第2(1)題。
第二單元:因數和倍數
第二課時:因數與倍數(2)
教學內容:教材P6例3及練習二第2(1)、3~8題。
教學目標:
知識與技能:通過學習,使學生能自主探究,找出求一個數的倍數的方法。 過程與方法:結合具體情境,使學生進一步認識自然數之間存在因數和倍數的關系,掌握求一個數的因數和倍數的方法。
情感、態度與價值觀:初步學會從數學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養學生概括、分析和比較的能力,使學生體會數學知識的內在聯系。
教學重點:掌握求一個數的倍數的方法。
教學難點:理解因數和倍數兩者之間的關系。
教學方法:啟發式教學法、指導自主學習法。
教學準備:多媒體。
教學過程:
一、復習導入
10,28,42的因數有哪些?你是用什么方法找出這些數的因數個數的?一個數的因數中,最大的是幾?最小的是幾?
二、探索新知
1.探索找倍數的方法。(教學例3)
出示例3:2的倍數有哪些?
師:你會找2的倍數嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學也是用乘法做的?
師:你們都是用2去乘一個數,所得的積就是2的倍數。還有不同的方法嗎?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數全部寫出來嗎?
師:為什么?(因為2的倍數有無數個)
師:怎么辦?(用省略號)
師:通過交流,你有什么發現?
引導學生初步體會2的倍數的個數是無限的。
追問:你能用集合圖表示2的倍數嗎?
學生填完后,教師組織學生進行核對。
(4)即時練習。讓學生找出3的倍數和5的倍數,并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據錯例進行適時剖析。
4.反思提煉。師:從前面找因數和倍數的過程中,你有什么發現?
先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:
(1)一個數的最小因數是1,最大因數是它本身。
(2)一個數的最小倍數是它本身,沒有最大倍數。
(3)一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
三、鞏固提升
1.指導學生完成教材第7~8頁“練習二”第4、5、6、7題。
學生獨立完成全部練習后教師組織學生進行集體證正。
集體訂正時,教師著重引導學生認識以下幾點:
(1)第4題“15的因數有哪些?”和“15是哪些數的倍數”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數的倍數的個數是無限的,第(4)小題也是錯的,因為在研究因數和倍數時,我們所說的數指的是自然數,不含小數。
(3)思考題:兩數如果都是7(或9)倍數,它們的和也一定是7(或9)的倍數,即如果兩數都是n的倍數,它的和也是n的倍數。
2.利用求倍數的方法解決生活中的實際問題
出示:媽媽買來幾個西瓜,2個2個地數,正好數完,5個5個地數,也正好數完。這些西瓜最少有多少個?
理解題意,分析解答。
教師提示“2個2個地數,正好數完,說明西瓜的個數是2的倍數,5個5
因數和倍數教學設計3
一、教學背景分析:
教材分析因數和倍數是人教版第十冊第二單元的起始課。教材不再以“整除”概念為基礎引出因數與倍數,而是利用擺小飛機隊形這一直觀教學的基礎上,借助整除的模式na=b,直接引出因數和倍數的概念并理解這二個概念,對于后面的學習起到承上啟下的重要作用。
學情分析學生對“因數和倍數”的名稱并不陌生。學生可能會將乘法和除孤立開來,不能溝通聯系,往往認為“乘法中有因數,除法中有倍數”。學生還有可能受前認知的干撓,往往把倍數認識是二年級的“倍的認識”,而不是“整除條件下的倍數”。學生對整除中因數和倍數的認識是模糊的,甚至是混亂的。教學目標通過動手操作,認識和理解“倍數和因數”,發現并掌握尋找一個數的因數和倍數的方法,體會一個數的倍數和因數之間的相互依存關系。經歷“活動建構”和“自主探究”的過程,發展學生的數感,培養思維的有序性。讓學生體會數學的奇妙、有趣,產生對數學的好奇心。教學重點:
理解因數和倍數的意義以及相互依存的關系。掌握找一個因數和倍數的方法。教學難點:
理解因數和倍數的意義以及相互依存的關系。
教學過程:
依托原有認知活動中建構概念。
1、建立因數和倍數的概念。
五年級4個班同學參加國慶活動分班訓練。每班要排成4路縱隊,每隊人數相等,可以怎樣站隊呢?這4個班的人數分別是:18、20、24、28人。(用圓片擺一擺)
(1)匯報學生擺一擺的情況和結果。
(2)你能試著說一說20、24、28與4之間有什么關系嗎?
生:20是4的倍數,24是4的倍數,28是4的倍數,4是20的因數,4是24的因數,4是28的因數。
為什么不選18呢?生:18不是4的倍數,4也不是18的因數。
(4)18是誰的倍數呢?用圓圈代表一個人,這18個人可以怎樣站隊?請你擺一擺,小組長匯報。師板書:
18×1=18 2 ×9=18 3×6=18
18=18×1=2×9=3×6
18÷1=18 18÷2=9 18÷3=6
師:你能說出18與1、2、3、6、9、18有什么關系嗎?
生:1、2、3、6、9、18是18的因數,18是1、2、3、6、9、18的倍數,它們是互相依存的關系。
師:判斷下列算式,哪個算式是整除,哪個不是,誰是誰的因數,誰是誰的倍數?
(1)12×0.5=6
(2)24÷0.6=4
(3)28×2=56
(4)28÷7=4
(5)32÷6=5……2
(6)1.8÷0.9=2
(7)4×3=12
(8)3×0=0
生:(3)、(4)、(7)是整除,其余的不是整除。2和28是56的因數,56是2和28的倍數……
師:其余的為什么不是呢?
生:它們有的是小數和0或不能除盡,整除只研究非零整數。
鞏固因數和倍數的認識:從3、5、18、36、20中任選兩個數,說一說誰是誰的因數,誰是誰的倍數?(為了處理因數和倍數相互依存關系)
自主探究,在對話中生成方法。1、20、24、28除了4以外,還有其他的因數嗎?
生:有。20的因數有:1、2、4、5、10、20。
24的因數有:1、2、3、4、6、8、12、24。
28的因數有:1、2、4、7、14、28。
2、20、24、28都是4的倍數,4還有其他的倍數嗎?
生:有。4的倍數是:4、8、12、16……
因數和倍數有什么特征?生:一個數的因數的個數是有限的,最小的因數是1,最大的.因數是它本身。一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數,因為自然數的個數是無限的。(師板書。)
反饋鞏固練習,應用中體會奧秘。基本練習。
(1)5是因數,30是倍數。()
一個數的倍數一定比它的因數大。()下列哪個算式中的數具有因數和倍數的關系()3+6=9 4×3=12 2.6÷2=1.3 20—14=6
下面各數中,因數的個數最多的是()19 22 60 85 97 100
拓展練習。找出6、28的因數及各自的倍數,根據因數的情況介紹完美數,體會人類對數的探索無止盡。找出220、284的因數,認識相親數,感受數與數之間的美妙規律。課堂總結,梳理知識,提升認識。師:這節課你們有什么收獲?你對數有了哪些新的認識?
板書設計:
20÷4=5 24÷4=6 28÷4=7 20、24、28是4的倍數
4 ×5=20 4 ×6=24 4×7=28 4是20、24、28的因數
18×1=18 2×9=18 3×6=18
18=18×1=2×9=3×6
18÷1=18 18÷2=9 18÷3=6
一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數,因為自然數的個數是無限的。
6的因數:1、2、3、6。 6=1+2+3 6是完美數
教學反思讓學生在動手操作中,初步認識概念。以往的教學,在揭示概念的過程中,大多是以嚴格的定義形式,以教授為主,在大量反復練習中加深對概念的理解。本設計突出了在揭示概念的過程中,幫助學生借助直觀操作建立模型,理解概念。體會因數與倍數的關系。
讓學生在對比交流中,深化理解概念。教材中只是用12個小飛機拼擺來幫助學生認識整除,因數和倍數感覺淺顯。本設計對教材進行了合理的改編,讓學生對4個數據(18 20 24 28)的拼擺認識因數和倍數,加深對“整除、因數和倍數”的理解。在18與其他數據的對比中,深化理解什么是整除。
讓學生在拓展訓練中,體會知識的奧秘。這節課對“因數與倍數”理解的基礎上,通過拓展練習找因數,加強了基礎技能的訓練,又讓學生感受到數與數之間的神奇,激發起學生對數學的好奇。感受到知識的奧秘,產生繼續學習的愿望。
因數和倍數教學設計4
在學習本單元之前,學生已經較為系統地掌握了十進制計數法,同時也基本完成了整數四則運算的學習。這節課將引領學生從一個新的角度(即倍數和因數的角度)來研究非零自然數的特征及其相互關系,為學生進一步學習數的分類、公倍數和公因數以及分數的約分、通分等奠定基礎。
1.讓學生理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。
1、從學生熟悉的生活入手。首先和學生交流生活中人與人的關系,自然過渡到自然數中數與數之間的關系。并由猜老師的年齡,引入倍數的概念以及找一個數倍數的方法。
2、從學生的操作入手。由淺入深,由無序到有序,通過讓學生用不同個數的正方形拼成長方形,引入因數的概念,引導學生將數和形有機結合起來,從而有序地找出一個數的所有因數。
一、課前談話。
1、話家常,拉“關系”
是的,在我們生活中人與人之間總會存在著這樣那樣的關系,而在數字的世界里,數和數之間也會存在各種各樣的關系。今天這節課,我們就和大家一起研究兩個非零自然數之間的關系。
二、學習倍數的意義。
你們為什么異口同聲地說我36歲呢?難道只有36是9的倍數嗎?
2、按順序,找倍數。
9的倍數除了36還有什么數嗎?能寫完嗎?為什么?
指出:1倍、2倍往下寫,通常只要寫出5個,然后用“??”表示。你能直接寫出2的倍數和5的倍數嗎?學生獨立書寫。
指名回答,板書:2的`倍數有2、4、6、8、10、12??。
5的倍數有5、10、15、20、25、30??提問:觀察上面的三個例子,你有什么發現?在小組內討論。
指名匯報,相機出示以下結論:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。
三、學習因數的意義。
1、初擺圖形,感知“因數”屏幕出示12個同樣大小的正方形。
根據3х4=12,我們可以說(屏幕出示):12是3的倍數,12也是4的倍數;3是12的因數,4也是12的因數。
同學們一起來讀一讀,感受一下。
請你從1х12=12;2х6=12這兩道算式中任選一題,用上面的話說一說。
2、再擺圖形,感受“順序”
學生獨立練習后,組織匯報。
根據學生的回答,投影出示相應的拼法,并相機板書:16÷1=16。
16÷2=816÷4=4。
你能結合這道算式,說說誰是誰的倍數,誰是誰的因數嗎?
你能連起來說說16的因數有哪些嗎?相機板書:16的因數有:1、16、2、8、43是不是16的因數,為什么?5呢?明確因倍關系的依據。
3、數形結合,掌握方法。
將你找出的36的因數寫在練習紙上。
展示學生的作品。36的因數有:1、36、2、18、3、12、4、9、6.將方法優化:根據數形結合的思想,運用除法算式一對一對地找一個數的因數更為簡便,并且能夠做到不重復、不遺漏。
4、觀察思考,發現規律。
引導學生觀察12的因數、16的因數和36的因數。
提問:觀察上面的三個例子,你又有什么發現?在小組內討論。
明確:1是所有非零自然數的因數。
既然1是所有非零自然數的因數,那么換句話說,也就是所有非零自然數都是1的?(讓學生接上說倍數)。
四、綜合練習,加深理解。
2、你猜、我猜、大家猜。
1)、茶杯每只4元,我去超市買了一些茶杯,猜猜我可能用了多少元?讓學生盡可能說出不同答案,師適時追問:可能嗎?如有錯誤,要求學生說出錯在哪里,明確用去的錢數是4的倍數。
2)、出示邊長3厘米的正方形。
a、長24cm、寬8cm。
b、長36cm、寬4cm。
根據12的因數的個數比16的因數的個數多,引導學生得出并不是數字越大,因數的個數就越多。然后然學學生找出60的所有因數。
五、總結延伸。
因數和倍數教學設計5
教學目標:
1.通過動手操作和寫不同的乘法算式,認識倍數和因數。
2.依據倍數和因數的含義和已有的乘除法知識,自主探索并總結找一個數的倍數和因數的方法。
3.在探索中,培養學生抽象,概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
教學重點、難點分析:
由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確了一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節課的教學我把重點定位于理解因數和倍數的含義。教學難點是自主探索并總結找一個數的倍數和因數的方法。
教學課時:人教版五年級下冊第二單元《因數與倍數》第一課時
教具學具準備:
1.學生每人準備12個大小完全相同的小正方形,一張寫有自己學號的卡片。
2.教師準備多媒體課件。
一、創設情景,明確探究目標
師:人與人之間存在著許多種關系,我和你們的關系是……?
生:師生關系。
師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)
1.操作激活。
師:我們已經認識了哪幾類數?
生:自然數,小數,分數。
師:現在我們來研究自然數中數與數之間的關系。請你們用12個小正方形擺成不同的長方形,并根據擺成的不同情況寫出乘、除算式。
2.全班交流。
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
師:在這3組乘、除法算式中,都有什么共同點?
生匯報。
師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關系還有一種說法,你們想知道嗎?請看課本p12。
師:2和6與12的關系還可以怎樣說呢?
生:2和6是12的因數,12是2的倍數,也是6的倍數。
師:也就是說,2和12、6的關系是因數和倍數的關系,這幾組算式中,誰和誰還有因數和倍數的關系?
小組合作,交流匯報。
師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數。
揭示課題:今天我們要根據這些算式研究數學新本領。因數和倍數。
師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
3.舉例內化:
你能寫出一個算式,讓你的同桌找一找因數和倍數嗎?(學生互說,教師巡視找出典型例子)
4.下面的說法對嗎?說出理由。
(1)48是6的倍數。
(2)在13÷4=3……1中,13是4的倍數。
(3)因為3×6=18,所以18是倍數,3和6是因數。
師:第(3)題有兩種不同的意見,請反對意見的同學說說理由。
生:因為沒有說明18是誰的倍數,所以不對。
師:你認為怎樣說才正確呢?
生:我認為應該這么說:18是3和6的倍數,3和6是18的因數。
師強調:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數),也就是說:因數和倍數不能單獨存在。
二、自主探究,找因數和倍數
1.拓展提升,主動建構:
⑴遷移嘗試:請學生試著找出36的所有因數。
⑵交流方法:教師即時捕捉開發學生在課堂上的基礎性教學資源,并及時創生為生成性的教學資源,引導學生在交流中評價,在評價中探究,在發現中建構。預計學生會有這樣幾種情況出現:一是寫得多與少的區別,二是找的方法上的區別。具體表現為:一是無序、沒有方法地寫出了一些,如2,3,6,而且僅此寫出了幾個;二是有順序地用乘法( )×( )=36的方法,一對一對地寫出了1,36,2,18,3,12,4,9,6,但沒有按照從小到大的順序寫;三是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫出: 1,2,3,4,6,9,12,18,36。
⑶啟迪思考:怎樣找才能不重復不遺漏?
小組合作,自主探究,匯報交流。
找一個數的因數時要做到不重復也不遺漏,方法可以有:
用乘法( )×( )=36的方法,一對一對地寫;
或者是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫。
36的因數有:1,2,3,4,6,9,12,18,36。(板書)
⑷試一試找20的所有因數。
⑸介紹36的.因數的另一種寫法----集合
用集合形式寫18的因數
2.創設情境,自主探究:
請學生寫出6的倍數。預計學生在寫6的倍數時,會有這樣幾種情況出現:一是寫得多與少的區別,二是找的方法上的區別。具體表現為:一是無序、沒有方法地寫出了一些,6二是有順序地用乘法口訣寫6,三是用加法的方法,每次遞加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法寫。同時可能還會有學生在教師宣布時間到的時候會因為6的倍數寫不完而抱怨時間太少。
請寫得又多又快的同學介紹自己的好方法、小竅門。在此基礎上交流評價小結方法。(評價時突出有序思維的策略)
3.遷移內化,自主探究:
⑴嘗試遷移:請學生嘗試遷移,用自己喜歡的方法寫出2的倍數和5,4,7的倍數。
2的倍數有:2,4,6,8,10,12……
5的倍數有:5,10,15,20,25……
⑵引導觀察:請學生觀察以上這些數的倍數,有什么發現?
(一個數的倍數的個數是無限的,一個數最小的倍數是它本身。)
(3)還記得因數嗎,出示課件
觀察:看一看這些數的因數,你有什么發現?(36最小的因數是1,最大的是36,……一個數最小的因數是1,最大的因數是它本身。)
三、變式拓展,實踐應用
指導學生做書本“練習二”的第2題和第3題。
四、全課總結
師:今天這節課我們一起學習了“約數和倍數”,你有哪些收獲?
課堂練習:游戲:“我的朋友在哪里?”
游戲規則:(1)一位同學提出所要找的朋友的要求,例:“我的因數在哪里?”或“我的倍數在哪里?”(2)相應學號的同學站起來,其他同學判斷是否正確。
作業安排:
引導學生根據實際猜老師年齡,給出范圍:老師的年齡既是2的倍數也是5的倍數
因數和倍數教學設計6
教學內容:
小學數學第十冊教材12-13<<因數和倍數>>
教學目標:
1 讓學生理解倍數和因數的意義,掌握找一個非零自然數的倍數與因數的方法,發現一個非零自然數的倍數和因數中最大的數、最小的數以及一個非零自然數的倍數與因數個數的特征。
2 讓學生初步意識到可以從一個新的角度,即倍數和因數的角度來研究非零自然數的特征及其相互關系,培養學生觀察、分析與抽象概括的能力,體會數學學習的奇妙,對數學產生好奇心。
教學重點:理解倍數和因數的意義。
教學難點:從倍數和因數的意義出發,尋找一個非零自然數的倍數與因數。
教學過程:
一、直接導入
師:自然數是我們在數的王國中認識的第一種數,今天我們將從一個特定的角度,即倍數和因數的角度來研究自然數的特征及其相互關系。(板書課題:倍數和因數)
[評析:課始直接進入主題,揭示本節課新知識研究的方向,使學生產生探究新知的心理需求。]
二、教學倍數和因數的意義
(屏幕出示12個完全相同的正方形)
師:用這12個完全相同的正方形,能拼出一個長方形嗎?(生:能)你能用一道乘法算式,表示你拼出的長方形嗎?
生:我可以拼出一個3×4的長方形。
師:你們猜猜看,這會是一個什么樣的長方形?
生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學生所猜的長方形,并讓學生明白這兩種拼法其實是相同的)
生:我還可以拼出一個2×6的長方形。
生:我還可以拼出一個1×12的長方形。(師問法同上,略)
師:同學們可別小看這三道算式,今天我們學習的內容,就將從研究這三道乘法算式拉開帷幕。
[評折:準確把握學生的學習起點,讓學生根據所列乘法算式猜想可能拼成的長方形,大屏幕隨之展示學生猜想的長方形,更加激起學生的求知欲。]
師:根據3×4=12,我們可以說(屏幕出示):12是3的倍數,12也是4的倍數;3是12的因數,4也是12的因數。
師:同學們一起來讀一讀,感受一下。
師:你讀懂了些什么?(引導學生感知什么是倍數、什么是因數,即倍數和因數的意義;明白在乘法算式中,積就是兩個乘數的倍數,兩個乘數就是積的因數)
師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。
師(出示18÷3=6):誰是誰的倍數?誰是誰的因數?為什么?
生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數,3和6是18的因數。(引導學生明白根據乘除法的互逆關系,在除法算式中也可以說誰是誰的倍數、誰是誰的因數)
屏幕出示:4是因數,24是倍數。
師:這句話對嗎?(讓學生理解倍數和因數是兩個數之間的相互依存關系,必須說誰是誰的倍數、誰是誰的因數)
師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學一定發現在這三道乘法算式中。我們其實已經找到了12的所有因數,你知道都有哪些嗎?(引導學生說一說)
屏幕出示一組數:36、4、9、0、5、2。
師:請你從這組數中任選兩個數,用倍數和因數的關系來說一說。(生可能會選36和4、36和9、4和2這幾組數)
設疑:
(1)為什么不選0呢?(讓學生理解倍數和因數是針對非零的自然數)(屏幕演示將“0”去掉)
(2)為什么不選5呢?(例如36和5,因為找不到一個自然數和5相乘能得到36,或者36除以5有余數)(屏幕演示將“5”去掉)
(3)去掉了0和5,剩下的這些數和36有什么關系呢?(它們都是36的因數,或36是它們的倍數;當然,36也是36的因數,36也是36的倍數)
[評析:倍數和因數意義的學習層次分明。(1)猜想:由1 2個完全相同的正方形拼成一個長方形的不同拼法,得出三道乘法算式。根據3×4=12這道算式中三個數的關系,讓學生初次感知倍數和因數的.意義。(2)拓展:根據除法算式中“存在一個自然數等于兩個自然數乘積”這一條件,揭示除法算式中依然存在著倍數和因數的關系,拓展了對倍數與因數意義的理解。(3)深化:探索并感知倍數和因數的相互依存關系。“從一組數中任選兩個數”說意義的訓練,鞏固與深化了對倍數和因數意義的理解。]
三、探討找一個數的因數的方法
1 師:在剛才這組數(36、4、9、0、5、2)中,2、4、9和36都是36的因數。除了這些,36的因數還有嗎?(生一個一個地舉例)這樣一個一個雜亂無序地找,你們覺得這種方法好嗎?(生:不好!)不好在哪兒呢?
生:容易漏掉或重復。
師:你們有沒有什么好辦法,能一個不落地將36的所有因數都找到呢?同學們可以獨立完成這個任務,也可以同桌的兩位同學合作完成。如果你全部找到了,就請將36的所有因數寫在練習紙上。同時將你找因數的方法寫在橫線的下方。(教師巡視,學生討論交流)
展示學生的作品,學生可能出現的答案有:
(1)根據1×36=36、2×18=36……分別得出1、36、2、18、3、12、4、9、6等數都是36的因數;
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數都是36的因數。
在寫法上,可能出現的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序寫,即1、2、3、4、6、9、12、18、36。然后引導學生比較這兩種寫法的不同。將方法優化:運用除法算式一對一對地找一個數的因數更為簡便,并且不重復、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)
2 探討一個數的因數的特征。
課件出示12的因數、15的因數和36的因數。(從小到大排列)
學生觀察、討論下面的問題(課件出示問題):一個非零自然數的因數的個數是有限的還是無限的?一個非零自然數的最大因數是幾?一個非零自然數的最小因數是幾?
課件出示描述一個非零自然數的因數的特征的表格(如下),學生討論、交流后再反饋。
師(小結):一個非零自然數的最大因數是它本身,最小因數是1,因數的個數是有限的。
[評析:找一個數的因數是本節課的教學難點。教學中,教師調整教材的編排順序,先學習找一個數的因,數,通過置疑“一個個地找36的因數,這種方法好嗎?不好在哪”,啟發學生根據因數的意義和乘除法的互逆關系,有序地找出36的所有因數,并及時優化方法。同時,引導學生自主探索,在觀察中發現一個數的因數的有關特征,最后進行總結,培養了學生解決問題的能力。]
四、探討找一個數的倍數的方法
1 師:我們已經掌握了如何有序地、完整地找出一個非零自然數的所有因數的方法。如果讓你找出一個數的所有倍數,你會找嗎?(生:會)那么,我們就一起來找找3的倍數。(學生試著找出3的倍數,教師巡視,對有困難的學生給予幫助)
2 師:你是怎樣有序地、完整地找出3的倍數的?
生:用3分別乘1、2、3……得出3的倍數。
生:用3依次地加3得到3的倍數。
師:你認為哪種方法能更迅速地找出3的倍數?(學生討論交流)
師:3的倍數能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數的個數呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)
3 寫出30以內5的倍數。(做在練習紙上)
4 課件出示3的倍數、4的倍數、5的倍數,讓學生從最大倍數、最小倍數、倍數的個數三個方面去描述一個數的倍數的特征(見下表)。
師(小結):一個非零自然數的最小倍數是它本身,沒有最大的倍數,所以倍數的個數是無限的。
[評析:借助學習一個數的因數的方法,以此為基礎,讓學生自主探索找一個數的倍數的方法。在探索交流中,優化尋找一個數的倍數的方法,獲得一個數的倍數的特征。]
五、組織游戲,深化認識
師:這節課,我們通過三道乘法算式與倍數和因數進行了兩次的親密接觸。第一次的接觸,讓我們了解了倍數與因數的意義;第二次的接觸,通過找一個數的倍數和因數,我們了解了一個數的倍數和因數的特征。通過這兩次的親密接觸,相信 同學們對于今天所學的知識,已經有了比較深刻的理解。下面,就讓我們輕松片刻。一起來玩一個特別好玩的游戲,感興趣嗎?
游戲——請到我家來做客
(每位學生的手中,都有一張寫有該名學生的學號卡片)
課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。
(1)屏幕上出現了可愛的小狗向同學們走來(配音):24的因數是我的朋友。如果你卡片上的數是24的因數,歡迎你,我的朋友!(卡片上的數若符合要求,就請這位學生站起來)
(2)屏幕上出現了笨笨的小豬向同學們揮手(配音):我邀請的朋友是5的倍數,喜歡我,就快快來吧!
(3)瞧!可愛的小貓咪也來了。(屏幕上出現了俏皮、可愛的小貓咪)配音:如果你卡片上的數是1的倍數,請來我家做客吧!
(每位學生卡片上的數都符合要求,所以全班學生都站了起來)
師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數,好嗎?(生答略)
師:是不是所有的自然數都可以呢?
生:除了0。
屏幕出示:所有非零自然數都是1的倍數。
(4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數的因數。這個數是幾呢?(生討論交流)
屏幕出示:只有1才符合要求,因為1是所有非零自然數的因數。
六、挑戰自我,拓展升華
師:雖然我們只合作了這短短的三十分鐘,但老師已經深深感到我們這個班的同學非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰性的節目想考考大家,你們敢不敢接受挑戰?(生:敢!)
挑戰——你猜、我猜、大家猜I(屏幕演示動畫標題)
規則:下面每組數,去掉一個數,剩下的數便是其中一個數的倍數或因數。你能找出這個數嗎?
(1)20、5、4、3。
答案:去掉3(屏幕演示隱去“3”),剩下的數是20的因數,或20是它們的倍數。
(2)4、12、18、3。
答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數便是12的因數,或12是它們的倍數;二是去掉4(屏幕演示隱去“4”),剩下的數便是3的倍數。
[評析:設計游戲環節,對整節課的知識點進行總結深化,并引導每位學生參與其中,積極主動地思考本節課所學的知識,教學過程真實、有效。]
七、全課總結
師:通過今天這節課的學習,你有什么收獲?你們學得開心嗎?玩得開心嗎?其實。數學就是這么簡單而有趣,讓我們每天都樂在其中!
總評:
本節課的教學特色是嚴謹靈活、細膩奔放。在“因數和倍數”概念的學習過程中,重視師生情感的交流,注重每個學生的發展,較好地體現了“教師有效引導下學生自主探索”這一教學策略。
1 意義教學引導學生自主構建。
在多次的實踐教學中,發現用12個完全相同的小正方形拼出一個長方形。對于四年級的學生來說非常容易。教材這樣安排的目的,在于幫助學生有意識地感受1和12、2和5、3和4這幾組數之間的有機聯系。
本課中,倍數和因數的意義教學分三個層次:
1 借助三個問題讓學生通過想像及大屏幕的直觀演示,引導學生得出三道乘法算式,同時介紹倍數和因數的含義。
2 通過除法算式找因倍關系。
3 滲透倍數和因數的相互依存性。
2 合理組織教材,將找一個數的因數及其特征教學提前。
尋找一個數的因數是本節課的教學難點,學生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。
教學中,教師出示一組數,如36、4、9、0、5、2,讓學生從這組數中任選兩個數,用倍數和因數的關系來說一說。
最后設疑:
(1)為什么不選O呢?(讓學生理解倍數和因數是針對非零的自然數)
(2)為什么不選5呢?(如36和5,因為找不到一個自然數和5相乘能得到36,或者36除以5有余數)
(3)去掉了0和5,剩下的這些數和36有什么關系呢?(它們都是36的因數,或36是它們的倍數)
這樣的改變,既達到預定目的,又為學習找因數做了鋪墊,引發了學生尋找36的因數的濃厚興趣。在引導學生自主探索一個數的因數的特征時,教師讓學生帶著問題去觀察討論:每一個非零自然數的因數的個數是有限的還是無限的?一個非零自然數的最大因數是幾?一個非零自然數的最小因數是幾?以上安排,降低了學生的學習難度。
3 尋找一個數的因數和倍數的方法讓學生自己生成。
在尋找一個數的因數和倍數的過程中。教師將學生推向發現與探索的前臺。
尋找一個數的倍數和因數。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導學生進行溝通,尋找它們的共同點和聯系,進而比較各種方法之間的優劣,遴選最優方法,提升思維效率。
4 增強游戲中數學思維的含量。
知識在游戲中深化,在挑戰中升華。
本節課以“有效引導下自主探索”為教學策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學,將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發現、共同分享,引領學生經歷“研究與發現”的真實過程。課尾游戲的運用,激發了學生的學習熱情,讓學生以愉快的心情和良好的體驗融入學習活動中,培養了學生用數學眼光看待游戲的意識,大大降低了學生對數學概念學習的枯燥體驗。
因數和倍數教學設計7
教學目標:
1、理解質數和合數的概念,并能判斷一個數是質數還是合數,會把自然數按約數的個數進行分類。
2、培養學生自主探索、獨立思考、合作交流的能力。
3、培養學生敢于探索科學之謎的精神,充分展示數學自身的魅力。
教學重點:
1、理解掌握質數、合數的概念。
2、初步學會準確判斷一個數是質數還是合數。教學難點:區分奇數、質數、偶數、合數。
教學過程:
一、探究發現,總結概念:
1、師:(出示三個同樣的小正方形)每個正方形的`邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形?學生獨立思考,然后全班交流。
2、師:這樣的四個小正方形能拼出幾個不同的長方形?學生各自獨立思考,想像后舉手回答。
3、師:同學們再想一下,如果有12個這樣的小正方形,你能拼出幾個不同的長方形?師:我看到許多同學不用畫就已經知道了。(指名說一說)
4、師:同學們,如果給出的正方形的個數越多,那拼出的不同的長方形的個數——,你覺得會怎么樣?
學生幾乎是異口同聲地說:會越多。
師:確定嗎?(引導學生展開討論。)
5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數是什么數的時候,只能拼一種?什么情況下拼得的長方形不止一種?并舉例說明。
先讓學生小組討論,然后全班交流,師根據學生的回答板書。
師:同學們,像上面這些數(板書的3、13、7、5、11等數),在數學上我們把它們叫做質數,下面的這些數(4、6、8、9、10、12、14、15等數)我們把它們叫做合數。那究竟什么樣的數叫質數,什么樣的數叫合數呢?學生獨立思考后,在小組內進行交流,然后再全班交流。
引導學生總結質數和合數的概念,結合學生回答,教師板書:(略)
6、讓學生舉例說說哪些數是質數,哪些數是合數,并說出理由。
7、師:那你們認為“1”是什么數?讓學生獨立思考,后展開討論。
二、動手操作,制質數表。
1、師出示:73。讓學生思考著它是不是質數。
師:要想馬上知道73是什么數還真不容易。如果有質數表可查就方便了。(同學們都說“是呀”。)師:這表從哪來呢? (教師出示百以內數表)這上面是1到100這100個數,它不是質數表,你們能不能想辦法找出100以內的質數,制成質數表?誰來說說自己的想法?(讓學生充分發表自己的想法。)
2、讓學生動手制作質數表。
3、集體交流方法。
三、練習鞏固:完成練習四第
1、2題。
四、課題小結:
這節課你在激烈的討論中有什么收獲?
因數和倍數教學設計8
第一課時
復習內容:因數和倍數。
復習目標:
1:通過整理復習,使學生掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別,
2:掌握2、5、3的倍數的特征,掌握求因數、倍數、最大公因數和最小公倍數的方法,逐步培養學生的抽象思維能力。
復習重點:自主梳理知識,形成自己的認知結構。
復習難點:辨析和理解知識間的區別和聯系。
教學步驟
一、鞏固相關概念,理解它們的區別與聯系。
同學們回憶一下,有關因數與倍數我們學到了什么?介紹了哪些概念?
板書概念名稱,并讓學生說出每個概念及概念之間的區別與聯系。引導學生深入理解相關概念,并形成相應的知識網絡。
二、鞏固練習
1、復習自然數、整數、奇數、偶數、質數、合數。
(1)在2、3、0、91、0.25、1、65和50中,()是自然數,()是奇數,()是偶數,()是質數,()是合數。
(2)教材第138頁第2題。
學生根據題目要求寫出答案,并集體交流。
將其中的合數分解質因數。
問:質數與分解質因數有什么不同?
(3)師小結:自然數按能否被2整除分為奇數和偶數。自然數(0除外)按因數的個數分為1、質數和合數。
2、復習因數、倍數、最大公因數、最小公倍數和互質數。
判斷。完成141頁第1題(引導學生完成,教師訂正)
補充:(1)一個數的倍數都比它的因數大。()
(2)4.2÷0.6=7,我們說4.2是0.6的倍數。()
說明:“4.2是0.6的7倍”是對的,但幾倍與倍數是有區別的。因數和倍數只在整數范圍內研究。所以,我們不能說0.6是4.2的因數,4.2是0.6的倍數。
(3)24÷6=4,我們說24是倍數,6是因數。()
(4)是互質數的兩個數一定是質數。()
問:互質數與質數有什么不同?
(5)兩個質數相乘的積一定是合數。()
(6)如果一個自然數是6的倍數,那么它一事實上是2的'倍數。()
小結:一個數的因數個數是有限的,最小是1,最大是它本身。一個數的倍數的個數是無限的,最小是它本身,沒有最大的倍數。
3復習2、3、5的倍數的特征。
做教材138頁第1題
學生獨立完成,說一說自己是怎樣想的?
4、復習最大公因數和最小公倍數。
完成第141頁第2題(讓學生獨立完成,集體訂正)
小結:當兩個數是互質數時,它們的最大公因數是1,最小公總人倍數數是它們的乘積。當較大數是較小數的倍數時,較小數是它們的最大公因數,較大數是它們的最小公倍數。
三、全課總結(略)
四、作業:
課后反思
復習課是根據學生的認知特點和規律,在學生學習數學知識的某一階段,以鞏固、疏理已學知識、技能,促進知識系統化,提高學生運用所學知識解決實際問題的能力為主要任務的一種課型。這與我們教研組以前提出的復習課要進行“知識梳理、查漏補缺、鞏固提升”是基本一致的。本節課的流程也是“知識梳理、查漏補缺、鞏固提升”這樣三步驟。
一節課下來,通過討論和自己的進一步思考,覺得還是有一些不足。
1.課堂不夠開放。
開放的數學課堂已經成為當前數學課堂教學形式的主流。現在的數學課堂教學應充分關注學生的學習情感和學習體驗。在復習課的教學中,應給學生提供充分的“自我回憶”、“自我整理”、“質疑問難”、“自我反思”的空間。這與傳統的復習課中,教師將事先準備好的系統的知識結構圖呈現在學生面前,供學生復習是有很大區別的。
這節課中,學生的自我知識的整理,還可以進一步放手。可以完全由學生自己來完成,一個人完成不了的,可以小組合作完成。只有通過真正的自我整理,學生才會形成清晰的知識結構。
在回憶了知識點之后,還可以設計這樣一道開放題:請你從7、14、21、25、35這列數中找出與眾不同的一個,并說明理由。這樣可以充分激起學生的知識儲備,靈活主動地運用知識解決問題。
2.學生的自我評價和反思還不夠。
讓學生對復習的結果進行評價與反饋。教育心理學十分重視教學評價與反饋,認為通過教學評價給予學生一種成功的體驗或緊迫感,從而強化或激勵學生好好學習,并進行及時的反饋和調控,改進學習方法。老師可以這樣提問促進學生反思:你認為哪些地方是容易搞錯的?或者說你需要提醒大家注意哪些問題?
因數和倍數教學設計9
教學目標:
1、依據倍數和因數的含義和已有的乘除法知識,自主探索總結找一個數的倍數和因數的方法.
2、使學生在認識倍數和因數以及探索一個數的倍數或因數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。教學重點:理解因數和倍數的含義.教學難點:自主探索并總結找一個數的倍數和因數的方法.教學過程:
一、情境激趣。
腦筋急轉彎:有三個人,他們中有2個爸爸,2個兒子,這是怎么回事?
教師說明:人和人之間的關系是相互依存,數和數之間也是相互依存的。揭題:
二、初步認識倍數和因數。
1、創設情境。
用12個同樣大的正方形拼成一個長方形,可以怎么拼?請同學們先想象一下,然后說出你的擺法,并用乘法算式表示出來。
學生匯報拼法,教師依次展示長方形的拼圖,并板書:
4×3=1
26×2=12
12×1=12
教師根據4×3=12揭示:4×3=12
12是4的倍數,12也是3的倍數,4和3都是12的因數。提出要求:你能用倍數和因數說一說6×2=12
12×1=12嗎?
2、深化感知。
(1)你能舉出一些算式,說說誰是誰的倍數,誰是誰的因數嗎?
教師說明:為了方便,我們在研究倍數和因數時,所說的數一般指不是0的自然數。
三、探求一個數的倍數。
1、設疑。
在剛才的學習中,我們知道了3的倍數有
12、18。除了
12、18還有別的嗎?請在紙上寫出3的倍數。你能完成得又對又好嗎?。學生在書寫過程中引發沖突:為什么停下來不寫了?有什么困難嗎?引導學生討論后達成共識:加省略號表示寫不完。
2、交流。
揭示“有序”,為什么要有序地寫倍數呢?全班討論:“你是怎么寫3的倍數的?”。
3×
13×
2 3×
3……
3
3+3
6+3
……
一三得三二三得六三三得九
引導學生討論得出:用依次×
1、×
2、×3……寫出3的倍數。
3、深化:請寫出2的倍數,5的倍數。
4、引導觀察,發現規律。
小組討論:觀察這三道例子,你有什么發現?全班交流,概括規律。
5、小結:發現這些規律可以更好地幫助我們尋找一個數的倍數。
四、探求一個數的因數。
1、設疑。
剛剛我們學會了找一個數的倍數,接下來我們來找一個數的因數。
請寫出36的所有因數,
2、組織討論。
你是怎么找36的因數的?
( )×( )=36從一道乘法算式中可以找到2個36的因數,6×6=36呢?
36÷( )=( )從一道除法算式中也可以找到2個36的因數。
3、討論“多”。問:寫得完嗎?你可以按照什么順序寫?
師動畫演示36的因數(從兩端往中間寫),同時指出:當兩個因數越來越接近時,也就快要寫完了。
4、鞏固深化。
請寫出15的因數,16的因數。學生練習后組織評講。
5、引導觀察,發現規律。
問:通過觀察這三道例子,你能發現什么規律?
6、小結:寫一個數的因數時可以從1和它本身來寫,從小到大依次尋找。
五、鞏固拓展。
1、快樂大轉盤
2、猜數游戲。
六、老師總結:利用微課對整節課做一個總結。
七、學生總結:在這節課的學習中,有哪些地方給你留下了深刻的印象?
集體研討發言稿
這是一節概念課,關于“倍數和因數”教材中沒有寫出具體的數學意義,只是借助乘法算式加以說明,進而讓學生探究尋找一個數的倍數和因數。通過備課,我梳理出這樣一個教學脈絡:乘法算式——倍數和因數——乘法算式——找一個數的倍數和因數。從教材本身來看,這部分知識對于五年級學生而言,沒有什么生活經驗,也談不上有什么新興趣,是一節數學味很濃的概念課。如何借助教材這一載體,讓學生在互動、探究中掌握相應的知識,讓乏味變成有味呢?我從以下三個方面談一點教學體會。
一、設疑遷移,點燃學習的火花。
良好的開頭是成功的一半。我采用腦筋急轉彎中的一道題作為談話進入正題,不僅可以調動學生的學習興趣,看似不相關的兩件事例中隱藏著共同點:一一對應、相互依存。對感知倍數和因數進行有效的滲透和拓展。
教學找一個數的倍數時,我依據學情,設計讓學生獨立探究尋找3的倍數。學生發現3的倍數寫不完時面面相覷,左顧右盼。學生通過討論,認為用省略號表示比較恰當。用語文中的一個標點符號解決了數學問題,自己發現問題自己解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。教師一聲親切的問候:“怎么停下來了呢?”、一聲驚訝:“哦!寫不完呀?”、一句激勵:“能想出辦法嗎?”。看似教師“怠工”的預設,是為了學生“越位”的生成
二、滲透學法,形成學習的技能。
由于一個數倍數的個數是無限的,那么如何讓學生體會“無限”、又如何有序寫出來呢?我設計了嘗試練習引出沖突討論探究這么一個學習環節。學生帶著“又對又好”的要求開始自主練習,學生找倍數的方法有:依次加
3、依次乘
1、
2、3……、用乘法口訣等等。在學生充分討論的基礎上,我組織學生圍繞“好”展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的`學生認為:用乘法算式寫倍數,既快而且不受前面倍數的影響,可以很快地找到第幾個倍數是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費了“寶貴”的學習時間,但是學生從中能體會到學習的方法,發展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風光無限。
三、活用教材,拓展學習的深度。
教材中安排36÷()=()這一道除法算式來找一個數的因數。我覺得這樣的設計可能會帶來幾點不足,其一:學生感知倍數和因數的概念、尋找一個數的倍數都是借助乘法算式,同樣,找一個數的因數也可以利用乘法,讓所學的知識形成系統豈不更有利于學生進行有效學習嗎?其二:從學情來分析,相對于除法,學生更熟練、更喜歡運用乘法。以學定教,真正做到以人為本。我在教學時引導學生討論得出:借助()×()=36來尋找一個數的因數。
課尾,我設計了一兩個游戲,將整堂課的內容進行整理和概括,對易混淆的概念加以比較,對后續的學習進行適當的鋪墊。融知識性、趣味性為一體,收到了課雖止意未盡的良好效果。
縱觀整節課,學生在學習過程中自始至終處于主體地位,嘗試練習、自主探索、解決問題,教師只是加以引導,以合作者的身份參與其中。整節課似行云流水、波瀾不驚,但我想學生在思維上得到了訓練,探究問題、尋求解決問題策略的能力也會逐步得到提高的。
因數和倍數教學設計10
教學內容:
因數與倍數(P12-13例1及P15題1、2)
教學目標:
1、從操作活動中理解因數的意義,會判斷一個數是不是另一個數的因數。
2、培養學生抽象、概括與觀察思考的能力,滲透事物之間相互聯系,相互依存的辨證唯物主義觀點。
3、培養學生的合作意識、探索意識以及熱愛數學學習的情感。
教學重點:
理解因數的意義
教學難點:
能熟練地找一個數的因數。
教具準備:
多媒體課件
教學過程:
一、引入新課:
1、課件出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?你還能找出12的其他因數嗎?
(指名生說一說)
4、你能不能寫一個算式來考考同桌?學生寫算式。
5、師:今天我們就來學習因數和倍數。(板書課題:因數和倍數)
齊讀教材第12的注意。
二、自學預設:
1、仔細看例一,什么叫因數和倍數?像這樣的乘除法算式中的三個數之間還有另一種說法,你想知道嗎?
2、怎樣找因數?例如18,36的因數是什么?
3、因數有什么特點?一個數的最小因數是多少?有幾個因數?(舉例說明)
嘗試練習
試著完成P13的做一做練習
三、認識因數與倍數,展示交流
(一)找因數:
1、出示例1:18的因數有哪幾個?
師:從12的因數可以看出:一個數的因數還不止一個,那我們一起找找看18的因數有哪些?
學生嘗試完成匯報:(18的因數有: 1,2,3,6,9,18)
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有: 1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復的`因數只要寫一個就可以了,所以不需要寫兩個6)
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示。課件出示
5、小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二).我的質疑
1.誰能舉一個算式例子,并說說誰是誰的因數?
2.討論:0×3 0×10 0÷3 0÷10
提問:通過剛才的計算,你有什么發現?
3.注意:(1)為了方便,在研究因數和倍數的時候,我們所說的數一般指的是整數,但不包括0。(2)這節課我們研究因數與倍數的關系中所說的因數不是以前乘法算式名稱的“因數”,兩者不能搞混淆。
四、反饋檢測
1.下面每一組數中,誰是誰得因數?
16和2 4和24 72和8 20和5
2.下面得說法對嗎?說出理由。
(1)48是6的倍數
(2)在13÷4=3……1中,13是4的倍數
(3)因為3×6=18,所以18是倍數,3和6是因數。
3、完成P15第2題
學生自己獨立完成,講評時讓學生說一說,是怎么想的?
五、課堂小結:
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
板書設計: 因數和倍數
18的因數有: 1,2,3,6,9,18
一個數的因數::最小的是1,最大的是它本身。
因數和倍數教學設計11
復習內容:公因數和公倍數。
復習目標:通過復習,能又快又準地找出兩個數的最大公因數和最小公倍數,并能運用所學知識解決實際問題。
復習重點:又快又準的找出兩個數的最大公因數和最小公倍數。
復習難點:運用所學知識熟練的解決生活中的數學問題。
復習過程:
一、談話引出課題
1、這一單元,我們學習了什么?(生答)
今天我們一起復習公因數和公倍數。(揭題)
2、現在,你知道了哪些有關公因數和公倍數的知識?(小組討論→全班交流)
二、解答實際問題
1、我們已經學會了好幾種求最大公因數和最小公倍數的方法,你最喜歡哪種方法,為什么?(又快又準)
下面我們就用短除法求最大公因數和最小公倍數(24和36)。
2、談話:有些最大公因數和最小公倍數一眼就能看出,你想試一試嗎?
找出每組數的最大公因數和最小公倍數。
8和16()27和9()
13和39()51和17()
問:你們為什么這么快就能找出它們的最大公因數和最小公倍數?
3、找出下面每組數的最大公因數和最小公倍數
16和1()5和7()
11和8()9和10()
問:通過練習,我們又發現了什么?
4、你能說出下面每個分數中分子與分母的最大公因數嗎?
14/21()35/45()22/33()80/90()
5、說一說每組分數中兩個分母的最小公倍數。
2/3和4/73/5和9/105/9和5/67/8和11/12
6、判斷:
1、3和5沒有公因數。()
2、a = 4b(a、b都是整數)a和b的最大公因數是b。()
3、30是3和10的倍數。()
4、兩個數的`最小公倍數一定比這兩個數都大。()
5、如果兩個數的最大公因數是1,那么最小公倍數一定是它們的乘積。()
三、解決生活問題
談話:我們學習數學,就是為了用數學方法解決生活中的問題,現在老師帶來了一些生活中的數學問題,大家想挑戰嗎?
1、長途汽車站每隔8分鐘向a地發一輛車,每隔10分鐘向b地發一輛車,這兩趟車早上7:00同時發車,第二次同時發車是什么時候?
問:解決這個問題,實際上就是求什么?
2、一籃雞蛋,5個5個地數,6個6個地數,都少了2個,這籃雞蛋至少多少個?
3、有一種長方形地磚,長6dm,寬4dm,至少取多少塊才能拼成一個正方形?
4、有兩根長分別是32cm和40cm的木條,把它們鋸成同樣長的小段(每小段都是整厘米數),并沒有剩余,每小段最長是多少?
問:讀了這道題后,你認為哪些地方要引起大家注意?
5、把一塊長20cm寬15cm的長方形紅布,剪成邊長是整厘米數且面積盡可能大的相等的正方形,一共可以剪多少個?
6、思考題:
李老師把25本練習本和15支鉛筆,分別平均分給一個組的同學,結果練習本多了1本,鉛筆少了1支,你知道這組最多有幾個同學嗎?
四、交流新的收獲?
五、作業:完成《補充習題》
因數和倍數教學設計12
教學目標
1、從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數,學生能了解一個數的因數是有限的的;通過學習使學生掌握找一個數的因數的方法,能熟練地找一個數的因數。
2、培養學生抽象、概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
3、在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
學情分析
學生在已學過整數除法的基礎上進一步學習因數與倍數,理解因數和倍數的含義,掌握找一個數的因數的方法,能熟練地找一個數的因數。這節課這些知識點都是新知,教師需要在具體的教學活動中去感知辨析。
教學重點
理解因數和倍數的含義,會找一個數的因數。
教學難點
掌握找一個數的`因數的方法,能熟練地找一個數的因數。
教學過程
一、導入
課前交流:課開始之前,與學生交流人與人之間的關系。
師:在家里你和爸媽之間是什么關系?在學校我和你們的關系是?
師:對,我們是師生關系,我是你們的老師,你們是我的學生。人與人之間的關系是相互依存的,不能單獨存在。在數學這個大家庭里也存在著有這樣相互依存關系因數和倍數,這節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)
二、理解掌握因數和倍數的意義
(一)復習導入
教師用課件出示教材第5頁例1,
教師:這些除法算式有什么相同點?生:被除數和除數都是整數。
引導學生觀察圖上的算式,把這些算式分為兩類。
學生說出自己的分類方法,商是整數沒有余數的分為一類,商不是整數的分為一類。
(二)因數和倍數的意義
1、在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。
教師以商是整數的第一題為例說明,板書:12÷2=6。教師:12÷2=6在這道除法算式中,被除數和除數都是整數,商也是整數,這時我們就可以說12是2的倍數,2是12的因數。再交換除數和商的位置得12÷6=2,得出12是2和6的倍數,2和6是12的因數、
2、說一說第一類的算式中,誰是誰的因數?誰是誰的倍數?
學生回答,如:在20÷10=2中,20是10和2的倍數,10和2是20的因數。或:20是10的倍數,20是2的倍數,10是20的因數,2是20的因數。
學生通過說一說其他的式子,理解在沒有余數的整數除法中,被除數、除數和商之間的倍數與因數關系。
三、因數與倍數的關系
1、通過剛才同學們的回答,你發現了倍數與因數的關系是什么?
教師板書:因數與倍數是相互依存的。
2、用字母式子表示因數和倍數關系
學生同桌舉例,并說出誰是誰的因數,誰是誰的倍數。
教師:在自然數中像這樣的例子還有很多,舉也舉不完,那能不能用比較簡潔的方式來敘述因數與倍數的關系呢?
引導學生根據“用字母表示數”的知識表述因數與倍數的關系。
a×b=c,那么a和b是c的因數,c是a和b的倍數。(板書)
這里的a、b、c都是什么數,是自然數嗎?非0自然數(板書)
3、注意:為了方便,我們在研究因數和倍數時,所說的數指的是自然數,而且一般不包括0。
4、下面的說法對嗎?說出理由。
(1)因為20÷4=5,所以4和5是因數,20是倍數。
(2)因為7×4=28,所以7和4是28的因數,28是7和4的倍數。()
(3)13是13的因數。
(4)因為18÷1.8=10,所以1.8是18的因數,18是1.8的倍數。()
四、找因數的方法
1、出示例2:18的因數有哪幾個?
自己找一找、寫一寫,在練習本上把算式記錄下來。
學生嘗試完成后匯報:(18的因數有:1,2,3,6,9,18)
教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
借助數軸來看18的因數是怎樣快速地找到的。
找因數的方法:從小到大,一對一對有序地找,當下一對因數與前一對因數重復時就不要找了。
教師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的,或一對一對地寫,其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如18的因數。
2、對口令,找因數
20的因數有:1,2,4,5,10,20
36的因數有:1,2,3,4,6,9,12,18,36
舉錯例(1,2,3,4,6,6,9,12,18,36)
教師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
24的因數有:1,2,3,4,6,8,12,24
1的因數有:1,11
仔細看看,36的因數中,最小的是幾,最大的是幾?
3、你發現了什么?
(1)一個數的最小的因數是1,最大的因數是本身;
(2)一個數的因數個數是有限的;
(3)1是所有非零自然數的因數。
五、課堂作業
猜猜我是誰:
(1)我是所有非0自然數的因數;
(2)我的最大因數是12;
(3)我比5小并且有3個因數;
(4)我只有1個因數。
六、你知道嗎?
了解完全數。
七、課堂小結
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
因數和倍數教學設計13
教學內容:
蘇教版小學數學四年級(下冊)第70-72頁。
教學目標:
1、使學生結合乘、除法運算初步認識倍數和因數的含義,探索求一個數的倍數和因數的方法。
2、使學生在探索的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。
3、增強學生學習數學的興趣,感受到成功的快樂。
教學重點:
理解倍數和因數的含義,探索并掌握找一個數的倍數和因數的方法。
教學難點:
理解倍數和因數的含義及倍數和因數的相互依存關系。
教學準備:
學生:每人準備12個同樣大小的正方形。教師:課件
教學過程:
一、認識倍數和因數
1、提出活動要求:每一桌的同學合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來。看看哪桌的同學最快完成。
2分組操作活動,師巡視指導。
3、指名匯報,出示課件,全班交流。匯報時是引導學生根據“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。
4、教學“倍數”和“因數”的概念。
(1)結合4×3=12,說明12是4的倍數,12也是3的倍數,4和3都是12的因數。并板書。
(2)齊讀這三句話,板書課題:倍數和因數
(3)指名看式子說。
(4)請學生根據6×2=12和12×1=12兩道算式,照樣子說
一說哪個數是哪個數的倍數?哪個數是哪個數的因數?
追問:如果說12是倍數,3是因數,可以嗎?為什么?
明確:倍數和因數都是指兩個數之間的關系,是相互依存的。
教師指出閱讀底注明確:為了方便,我們在研究倍數和因數時,所說的數一般指不是0的自然數。不是0的自然數,0要考慮嗎?那從什么數開始。如1、2、3、4、5、6、7、8、9…….在小數和分數等其他數中就也沒有倍數和因數的說法了。(可根據具體的算式說明,如0×3=0,1.5×2=3。)
(5)練習:“想想做做”第1題。每位同學都各選一個乘法算式同桌之間互相說一說,
三、探索找倍數和因數的方法
1、探索找一個數的倍數的方法
(1)提出問題:什么樣的數會是3的倍數呢?明確:3的倍數是3與一個數相乘的積。你能找到多少個3的倍數?先讓學生獨立思考,再組織交流。
(2)啟發:誰能按從小到大的順序有條理的說出3的倍數?根據什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數。同時板書:
3×1=(3)3×2=(6)……
追問:能把3的倍數全部說完嗎?應該怎樣表示3的倍數有哪些呢?
根據學生的回答課件演示:3的倍數有3、6、9、12、15……
(3)完成后面的試一試。提醒學生注意有序的思考,并規范的表示出結果。
(4)一個數的倍數的特點。
提問:觀察上面的幾個例子,你發現一個數的倍數有什么特點?根據學生的交流歸納:一個數的倍數中,最小的是它的本身,沒有最大的倍數,一個數的倍數的個數是無限的。
提問:現在你能很快說出6的最小倍數是多少嗎?10呢?
2、探索找一個數的因數的方法
(1)提出問題:什么樣的數是36的因數?
學生舉例說明。明確:如果有兩個數相乘的積是36,那么這兩個數都是36的因數。
板書()×()=36
(2)提問:你能找出36的所有因數嗎?啟發:要做到不重復,不遺漏,怎樣才能有條理地找出36的所有因數?
學生試著在練習本上列式找出。
(3)學生匯報交流,根據學生的回答課件演示。
(4)進一步啟發:我們知道除法是乘法的逆運算,根據除法算式,也可以找一個數的.因數。。根據36÷1=36可以找到1和36……
請同學們看書71頁,完成書上的填空。
(5)完成“試一試”。提醒學生有序的思考,做到不重復,不遺漏。
學生匯報,說說你是怎樣找的。
(6)觀察發現
提問:觀察上面的例子,你發現一個數的因數有什么特點?
小結:一個數因數的個數是有限的,一個數的因數中,最小的是1,最大的是它本身。
提問:現在你能很快說出18的最小因數和最大因數是多少嗎?25呢?
四、鞏固練習
1、“想想做做”第2題。
組織學生讀題,理解題意。表中每欄的應付元數各是怎樣算出來的?他們都是4的什么數?你還能說出4的哪些倍數?能把4的倍數全部說完嗎?
2、“想想做做”第3題。
組織學生讀題,理解題意。表中每欄的每排人數是各怎樣算出來的?排數和每排人數都是24的什么數?
五、全課總結
這節課你學會了什么?
因數和倍數教學設計14
一、教學內容
1.因數和倍數
2.2、5、3的倍數的特征
3.質數和合數
二、教學目標
1.掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別。
2.通過自主探索,掌握2、5、3的倍數的特征。
3.逐步培養學生的數學抽象能力。
三、編排特點
1.精簡概念,減輕學生記憶負擔。
(1)不再出現“整除”概念,直接從乘法算式引出因數和倍數的概念。
(2)不再正式教學“分解質因數”,只作為閱讀性材料進行介紹。
(3)公因數、最大公因數、公倍數、最小公倍數移至“分數的意義和性質”單元,作為約分和通分的知識基礎,更突出其應用性。
2.注意體現數學的抽象性。
數學知識本身具有抽象性。學生到了高年級也應注意培養其抽象思維。
四、學情分析與教學建議
1.加強對概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。
從因數和倍數的含義去理解其他的相關概念。
2.要注意培養學生的抽象思維能力。
第一課時:因數和倍數
教學目標:
1、學生掌握找一個數的因數,倍數的方法;
2、學生能了解一個數的因數是有限的,倍數是無限的;
3、能熟練地找一個數的因數和倍數;
4、培養學生的觀察能力。
教學重點:掌握找一個數的因數和倍數的方法。
教學難點:能熟練地找一個數的因數和倍數。
教學過程:
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的'算式?
出示:因為2×6=12
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數倍數)
齊讀p12的注意。
二、新授:
(一)找因數:
1、出示例1:18的因數有哪幾個?
從12的因數可以看得出,一個數的因數還不止一個,那我們一起找找看18的因數有哪些?
學生嘗試完成:匯報
(18的因數有:1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
仔細看看,36的因數中,最小的是幾,最大的是幾?
看來,任何一個數的因數,最小的一定是(),而最大的一定是()。
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自己的練習本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如18的因數
1、2、3、6、9、18
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
1、我們一起找到了18的因數,那2的倍數你能找出來嗎?
匯報:2、4、6、8、10、16、……
師:為什么找不完?
你是怎么找到這些倍數的?(生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍數最小是幾?最大的你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數。
匯報3的倍數有:3,6,9,12
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數有:3,6,9,12,……
你是怎么找的?(用3分別乘以1,2,3,……倍)
5的倍數有:5,10,15,20,……
師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示
2的倍數3的倍數5的倍數
2、4、6、8……3、6、9……5、10、15……
因數和倍數教學設計15
一、教學目標
(一)知識與技能
理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法,發現一個數的倍數、因數中最大的數、最小的數,及因數和倍數個數方面的特征。
(二)過程與方法
通過整數的乘除運算認識因數和倍數的意義,自主探索和總結出求一個數的因數和倍數的方法。
(三)情感態度和價值觀
在探索的過程中體會數學知識之間的內在聯系,在解決問題的過程中培養學生思維的有序性和條理性。
二、教學重難點
教學重點:理解因數和倍數的含義。
教學難點:自主探索有序地找一個數的因數和倍數的方法。
三、教學準備
教學課件。
四、教學過程
(一)理解因數和倍數的意義
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)
第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。
2.明確因數和倍數的意義。
(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?
(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。
【設計意圖】引導學生從“整數的除法算式”中認識因數和倍數的意義,簡潔明了,同時為學習因數和倍數的依存關系進行有效鋪墊。
3.理解因數和倍數的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?
【設計意圖】引導學生在理解的基礎上進行正確表述:因數和倍數是相互依存的,不是單獨存在的。我們不能說4是因數,24是倍數,而應該說4是24的因數,24是4的倍數。
4.理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?
課件出示:
乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。
(2)今天學的“倍數”與以前的“倍”又有什么不同呢?
“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。
(3)交流匯報。
【設計意圖】“一個數的因數和倍數”與學生已學過的乘法算式中的“因數”以及“倍”的概念既有聯系又有區別,學生比較容易混淆,這也是學習一個數的“因數”和“倍數”意義的難點。通過觀察、對比、交流,引導學生發現一個數的“因數”和乘法算式中的“因數”的區別以及一個數的`“倍數”與“倍”的區別。
(二)找一個數的因數
教學例2:
1.探究找18的因數的方法。
(1)18的因數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。
因為18÷1=18,所以1和18是18的因數。
因為18÷2=9,所以2和9是18的因數。
因為18÷3=6,所以3和6是18的因數。
方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。
因為1×18=18,所以1和18是18的因數。
因為2×9=18,所以2和9是18的因數。
因為3×6=18,所以3和6是18的因數。
2.明確18的因數的表示方法。
(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數有:1,2,3,6,9,18。
圖示法(如下圖所示)。
3.練習找一個數的因數。
(1)你能找出30的因數有哪些嗎?36的因數呢?
(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?
【設計意圖】讓學生通過自主探索、交流,獲得找一個數的因數的不同方法,在練習中體會“一對一對”有序地找一個數的因數,避免遺漏或重復。初步感受一個數的因數的個數是有限的,以及“最大因數、最小因數”的特征。
(三)找一個數的倍數
教學例3:
1.探究找2的倍數的方法。
(1)2的倍數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:利用除法算式找2的倍數。
因為2÷2=1,所以2是2的倍數。
因為4÷2=2,所以4是2的倍數。
因為6÷2=3,所以6是2的倍數。……
方法二:利用乘法算式找2的倍數。
因為2×1=2,所以2是2的倍數。
因為2×2=4,所以4是2的倍數。
因為2×3=6,所以6是2的倍數。……
(3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?
(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、圖示法)
2.練習找一個數的倍數。
你能找出3的倍數有哪些嗎?5的倍數呢?
【設計意圖】在理解“倍數”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數的倍數的個數是無限的,以及“最小倍數”的特征。
(四)一個數的因數與倍數的特征
1.從前面找因數和倍數的過程中,你有什么發現?
2.討論交流。
3.歸納總結。
預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。
(五)鞏固練習
1.課件出示教材第7頁練習二第1題。
(1)想一想,怎樣找不會遺漏、不會重復?
(2)哪些數既是36的因數,也是60的因數?
【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數的因數”“一個數最大的因數是它本身”和“一個數的因數的個數是有限的”。同時,滲透兩個數的“公因數”的意義。
2.課件出示教材第7頁練習二第3題。
(1)學生獨立完成,交流答案。
(2)思考:5的倍數有什么特征?
【設計意圖】滲透5的倍數的特征。
3.課件出示教材第7頁練習二第5題。
(1)學生獨立完成,交流答案。
(2)你能改正錯誤的說法嗎?
(六)全課總結,交流收獲
這節課我們學了哪些知識?你有什么收獲?
【因數和倍數教學設計】相關文章:
《因數和倍數》的教學設計10-06
因數和倍數教學設計09-10
“倍數和因數”教學設計09-29
因數和倍數對比教學設計05-28
《倍數和因數》教學設計3篇03-08
《倍數和因數》教學設計(精選10篇)06-19
因數與倍數的教學設計10-26
因數和倍數的教學反思02-14
《因數和倍數》教學反思11-02