基因論文

時間:2023-03-12 07:59:17 論文 我要投稿
  • 相關推薦

基因論文范文

  導語:對于基因的研究發展,大家會有怎樣精彩的論述?以下是小編整理的基因論文范文:基因的研究發展,供大家參閱。

基因論文范文

  基因論文:基因的研究發展

  摘要:

  隨著生命科學的發展,人們對基因的認識越來越深入,“基因”一詞經過一個世紀的演變,已經可以從分子水平上進行更精準的解釋。基因概念歷史淵源的研究不僅可以從本質上揭示生命現象的奧秘,也可以促進商業和計算機等具有“生命”現象的領域的發展。這里綜述了基因概念的發展歷程,介紹了應用量子化學工具研究核酸的方法,分析了量子化學方法在遺傳學領域的應用前景。

  關鍵詞:

  基因 基因概念 歷史淵源

  遺傳學是研究生物起源,基因和基因組結構、功能及其演變規律的學科,而基因的研究對促進遺傳學發展具有重要意義。自20世紀開始以來,基因的發展經歷了理論水平、細胞水平的遺傳學階段和分子水平上的遺傳學階段,在前人大量實驗的基礎上,人們對基因的認識不斷深入,特別是隨著人類基因組計劃和“DNA元件百科全書”計劃(Encyclopedia of DNA Elements, ENCODE)的完成,人們對基因的認識又有了新的變化,并將遺傳學中基因的概念和理論應用到了計算機、商業和信息技術等領域。

  如今的21世紀,隨著學科交叉研究的發展,一些科學研究者開始利用物理化學工具來研究核酸結構,從分子水平上闡述遺傳現象背后的化學本質。本文結合大量文獻綜述了基因的發展歷程以及現階段物理化學方法在遺傳學研究中的應用,并展望了量子化學理論在遺傳學領域的應用前景。

  1、基因概念的歷史淵源

  19世紀,由于農業生產發展的需要,人們開始重視動植物的遺傳變異現象并對這些現象進行了系統研究,這為基因概念的產生創造了條件。1868年,Darwin C.受Hippocrates和Anaxagoras的生源說影響提出了泛生論的假說,認為生物體的細胞能產生自我繁殖的微粒,這些微粒可以匯聚于生殖細胞并決定后代的遺傳性狀,這種觀點缺乏實驗論證,不過它充分肯定了生物體內部存在特殊的物質負責遺傳性狀的傳遞。之后,Weismann A.又在前人基礎上提出了種質論(Germpiasm),認為種質是生物體的遺傳物質,它可能作為遺傳單位存在于染色體上,這對基因概念的形成奠定了理論基礎[1]。

  2、基因的研究發展

  2.1 基因概念的提出

  在前人的遺傳學理論研究基礎上,Mendel G.J.第一個對遺傳現象做了系統的實驗研究。通過豌豆雜交實驗,他認為生物性狀是由“遺傳因子”來控制的,這些遺傳現象符合分離定律和自由組合定律。之后,Devries H、Correns C.和Tschermak E.分別證實了孟德爾的實驗結果,到1909年,丹麥的Johannsen W.L.首次用“基因”一詞表示遺傳因子。不過,當時的遺傳因子沒有涉及到基因的具體物質概念,只是一個經過統計學分析的理論概念。

  2.2 基因學說的創立

  Mendel的遺傳因子學說是宏觀水平上的發現,其所提出的遺傳因子到底是否存在于細胞中需要進行細胞水平上的研究。隨著當時工業生產的發展,用以研究生物學實驗的儀器設備有了極大的改進。20世紀初,Boveri T.[2]和Sutton W.S.[3]各自在研究減數分裂時,發現遺傳因子的行為與染色體行為呈平行關系,提出了基因就在染色體上的假說。然后,1910年,Morgan T. H.等[4]用果蠅作材料,進行了一系列雜交實驗,發現了伴性遺傳現象和基因連鎖互換定律,直接證實了基因在染色體上,建立了染色體遺傳理論。1926年,Morgan T.H.正式提出了基因學說,即“三位一體”的基因概念,基因首先是決定性狀的功能單位,能控制蛋白質的表達,決定一定的表型效應;其次是一個突變單位,可以發生在等位基因之間,表現出變異類型;最后它是一個重組單位,只發生在基因之間,可以產生與親本不同的基因型[5]。這把染色體和基因聯系了起來,說明了基因具有物質性,不過,Morgan在其著作中并沒有涉及基因的本質是什么以及基因的功能是如何發揮等問題。

  2.3 基因化學本質的研究

  對于基因的化學本質和功能等問題,早在1909年,英國Garrod A.E.就提出過基因產生酶的觀點。之后,1941年斯坦福大學Beadle G.和Tatum E.[6]在研究真菌過程中,提出了“一個基因一個酶”的假說,認為一個基因控制一個酶的合成,基因通過酶控制生物的代謝途徑,這從生物化學角度闡述了基因的功能,不過這種基因的概念仍然沒有揭示基因的化學本質,只是解釋了基因發揮功能的途徑。到1944,Avery等通過肺炎雙球菌轉化實驗證明了遺傳物質的化學本質是DNA,然后,1956年,美國的Fraenkel又通過煙草花葉病毒實驗證明了RNA也可以作為遺傳物質進行傳遞[7]。

  2.4 基因功能的研究

  1953年,Watson J.D.和Crick F.H.C.[8]提出了DNA的雙螺旋結構,人們開始從分子水平上認識基因的本質,即基因是DNA分子中含有特定遺傳信息的一段核苷酸序列,是遺傳物質的最小功能單位[9],從此以后,人們對基因功能的認識開始有了深入的了解。1955年,Benzer S.[10]通過T4噬菌體感染大腸桿菌的互補實驗提出了順反子學說,認為基因就是順反子,即一個遺傳功能單位,一個順反子決定一條多肽鏈,它并不是一個突變單位和交換單位。一個順反子可以包含一系列突變子,突變子是DNA中構成的一個或若干個核苷酸,由于基因內的各個突變子之間有一定距離,所以突變子彼此之間能發生重組,重組頻率與突變子之間的距離成正比[11]。

  20世紀60年代之前,人們已經認識到基因是有著精細結構的DNA分子,其結構可以繼續分割,不過,當時對于基因功能表達及其具體作用等問題的研究依然局限于傳統的“一個基因一個酶”的學說。1961年,法國遺傳學家Jacob F.和Monod J.L.[12]根據對大腸桿菌的試驗,提出了大腸桿菌操縱子模型,認為DNA的不同區域存在一個調節基因和一個操縱子,操縱子模型包括若干結構基因、操縱基因和啟動基因。這一模型進一步說明了基因是可分的,通過基因間的密切協作,細胞才能表現出獨特的功能[13]。此后,隨著DNA重組技術和DNA測序技術的發展,人們對基因的研究更加深入,發現了許多基因的其他功能和特點,極大地完善了人們對生物體各種遺傳現象的認識。   2.5 基因概念的新發展

  20世紀70年代以后,隨著分子生物學技術的飛速發展,人們對基因的結構和功能上的特征有了更多的認識,其中比較重要的發現有假基因、重疊基因、跳躍基因、斷裂基因、反轉錄基因、印記基因等。結合基因的這些新發現,現今人們認識基因有以下幾種特點[5]:(1)基因不都是離散的,因為有重疊基因;(2)基因不一定是連續的,如斷裂基因;(3)基因可以移動,其位置可以改變,如跳躍基因;(4)基因不是全能的結構單位,有很多順式作用元件影響轉錄或剪接;(5)基因也不是簡單的功能單位,因為基因可以通過順式或反式剪接,產生多種蛋白質。那么,到底應該怎樣給一個基因準確定義呢?近年來,有很多人對此提出了看法。

  Gerstein等[14]提出,基因的定義應該和原來的定義有兼容,建立在已有的生物術語基礎之上。他們認為,基因是基因組序列的聯合體,這些序列可以編碼具有潛在重疊功能的產品(蛋白質或RNA),基因與其調節序列是多對多關系。在此基礎上,Pesole[15]則認為基因是一個離散的基因組區域,其轉錄可以被一個或多個啟動子和遠端調節成分調控,并含有合成功能蛋白質或非編碼RNA的信息。基因在最終功能產物上有共同性質,這個定義主要針對真核生物基因組,強調每個基因都分布于基因組的連續區域,基因序列包含5′UTR和3′UTR。此外,還有學者從計算機角度對基因的定義做了描述,他們把基因組比喻為一個生命體的大的操作系統,而基因就是其中的一個子程序。總之,隨著當今科技水平的發展,人們通過對DNA、RNA和蛋白質新功能的研究,發現基因并不是以前想得那么簡單,其概念、功能和特征是隨著一些特殊的生命遺傳現象可以改變的。

  如阮病毒的發現,朊病毒是一種只有蛋白質而沒有核酸的病毒,就之前生物學家對基因的概念而言,朊病毒的復制并非以核酸為模板,而是以蛋白質為模板,這又重現了20世紀遺傳物質本質問題的爭議,是現階段基因概念的新挑戰。此外,2006年,《自然》雜志在New Feature欄目上刊登了“什么是基因?”一文,這篇文章結合最近的研究成果對基因的概念做了新的詮釋,一些研究發現,RNA不是被動的將基因信息傳遞下去,而是主動地調控細胞的活動,有的RNA鏈不是傳統認為的只由DNA的一條鏈轉錄,而是由兩條鏈轉錄得來,還有一些RNA可以通過某種途徑使正常基因沉默,在必要時還會作為模板糾正某些異常基因,跨世代地攜帶生物體遺傳信息[16]。這些研究發現加深了我們對RNA的認識,深化了我們對生物體遺傳現象的了解。又20世紀90年代,美籍華人牛滿江教授又發現了“外基因”,即一些生物體細胞質中mtRNA能激活一些特定基因,使生物體表達特定的蛋白質,還有,2008年《自然》雜志上報告,美國科學家確認了一種可導致乳腺癌轉移的超級基因,這種基因可控制腫瘤細胞中其他基因的表達,它的表達與癌癥發生有密切的聯系[17]。

  總之,隨著科學的不斷發展,人們對于生物遺傳現象的認識越來越深入,基因的概念也隨著生物學的發展不斷變化和完善。由于其他非生命領域的研究對象顯示出了生命力及與生物基因相似的特征,現今,經濟領域和計算機領域中又出現了企業基因[18]、產品基因[19]、數據基因[20]等新的定義,基因概念的基本理論已經發展到更多學科中了,對基因本質和特征的研究越來越有必要。

  3、量子化學作為研究核酸方法的應用

  當前,遺傳學的研究已經發展到了分子水平,然而對于生物遺傳現象中一些酶、核酸、激素等活性物質的構象、生物活性和其具體作用機制依然存在爭議。生物系統研究的最大難題是生物分子的復雜性,常規的實驗方法只能得到實驗現象的宏觀方面解釋,而不能從微觀方面對實驗現象的化學本質做出解釋。目前有一些研究者將物理化學方法應用到了生命科學領域,建立了從理論分析到實驗優化的方法模式,他們根據實際體系在計算機上進行實驗,通過比較模擬結果和實驗數據檢驗理論模型的準確性,并在此基礎上模擬生物大分子的結構、性質和反應過程。

  隨著計算機技術和物理化學理論的發展,以及X射線、NMR等技術的應用,人們可以利用一些物理化學工具在計算機上進行分子模擬,以此來模擬DNA、RNA和蛋白質的結構,預測蛋白質與核酸的功能和性質。而且,隨著計算方法的改進,高度變化的核酸體系的精確分子模擬已成為可能,依賴強大的計算機就能模擬一些更復雜的反應,如DNA、RNA和蛋白質的催化及折疊等[21]。

  其中應用比較廣泛的物理化學工具就是量子化學方法,量子化學方法是應用量子化學基本原理和方法來研究化學體系的結構和化學反應性能的科學,其基本理論主要有價鍵理論(VB)、分子軌道理論(MO)、密度泛函理論(DFT),基本的計算方法有從頭算方法(ab initio)、半經驗方法(semi-empirical method)、密度泛函方法(Density Functional Theory)[22]。量子化學的原理和方法在物理化學、藥學計算和生命科學領域有廣泛的應用,可以很好地分析分子間相互作用的機理,解釋實驗中一些宏觀現象的物理化學本質。如李梅杰[23]利用量子化學方法中的高精度組合從頭算方法(ONIOM-G3B3)研究了核酸自由基性質和損傷機理,很好地解釋了生命過程中由于自由基和電子轉移導致DNA的斷鏈損傷而引起的衰老、癌癥、神經紊亂等疾病的發生。又如2002年,Starikov E.B.[24]總結了核酸中量子化學方法的應用,闡述了核酸中電荷轉移過程的量子化學描述及其化學機理,并詳細地討論了不同量子化學方法在研究核酸電子構型中的優缺點。此外,于芳[25]運用量子化學工具對胞嘧啶與丙烯酰胺組成的分子體系進行了計算,以此來模擬核酸與蛋白質相互作用的反應過程,分析了DNA與蛋白質的作用形式。

  對于利用量子化學方法研究蛋白質的應用,國外在這方面做得比較深入。如紐約州立大學石溪分校Simmerling C.等[26]應用量子化學方法研究了一種小分子量蛋白質,僅有20個色氨酸構成,準確地預測了蛋白質三維結構的折疊過程。又如Berriz和Shakhnovich[27]模擬了小的三螺旋束蛋白的折疊,Daggett和Fersht[28]模擬了小的單結構域蛋白的動力學折疊.還有Akira Shoji等[29]采用密度泛函理論方法優化了右手α-螺旋的PLA(聚L-丙氨酸)分子(如圖1所示,即H-Ala18-OH分子),分析了αR-螺旋的PLA形成的機制,獲得優化的αR-螺旋H-Ala18-OH構型外側的1H、13C、15N、17O原子的化學位移與用高分辨率固相NMR檢測的相同。

  4、展望

  近年來,國內外量子化學在分子生物學中的應用日趨廣泛,如利用量子化學方法研究納米微粒促進靶向給藥、純化核酸以及處理廢氣等技術的發展;應用量子化學方法優化生物活性分子結構,研發新型抗疾病藥物;采用分子模擬的量子化學計算方法探究激素與受體以及其他活性分子與核酸的作用機理等等,很大程度上促進了分子生物學和醫學的發展。從目前所作的科學研究看,量子化學完全可以作為遺傳學工具來研究生物體遺傳現象背后的化學本質,其在遺傳學的研究中有廣闊的應用前景。

  參考文獻

  [1] 光曉元.基因概念的歷史淵源及其歷史發展[J].安慶師范學院學報,2002,8(4):95-97.

  [2] Boveri T.ber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns[J]. Verh Phys.Med Ges Würzburg,1902, 35:67-90.

  [3] Sutton W S.The chromosomes in heredity[J].Bio Bull,1903,4:231-251.

  [4] Morgan T H.Sex-limited inheritance in Drosophila[J].Science,1910,32(812):120-122.

  [5] 謝兆輝.基因概念的演繹[J].遺傳,2010,32(5):449-454.

  [6] Beadle G W,Tatum E L.Genetic control of biochemical reactions in neurospora[J].Proc Natl Acad Sci USA, 1941,27(11):499-506.

  [7] 高汝勇.基因概念的發展歷程[J].科技風,2009(11):128-128.

  [8] Watson J D,Crick H F C.A structure for deoxyribosenucleic acid[J].Nature,1953:171,737.

  [9] 趙亞華.基礎分子生物學教程.2版.北京:科學出版社,2007,7:1-10.

  [10] Benzer S.Fine structre of a genetic region in bacteriophage[J].Proc Natl Acad Sci USA,1955,41(6):344-354.

  [11] 張勇.基因概念之演變[J].生物學通報,2002,37(10):52,54.

  [12] Jacob F,Monod J.Genetic vegulator ymechanisms in the synthesis of proteins[J].J.Mol.Biol,1961(3):318.

  [13] 劉元,陳國梁,梁凱.基因概念的演變[J].延安大學學報,2005,24(4):80-83.

  [14] Gerstein M B,Bruce C,Rozowsky J S,et al.What is a gene,post-ENCODE?History and updated definition[J].Genome Res,2007,17(6):669-681.

  [15] 施江,辛莉,郭永新,等.現代生物學基因研究進展—— 從遺傳因子到超級基因(2)[J].生物學通報,2009,44(4):4-7.

  [16] 唐捷.基因是什么[J].生物化學與生物物理進展,2006,33(7):607-608.

  [17] 歐陽芳平,徐慧,郭愛敏,等.分子模擬方法及其在分子生物學中的應用[J].生物信息學,2005(1):33-36.

  [18] 許曉明,戴建華.企業基因理論的演化及其順反子系統新模型的構建[J].上海管理科學,2008,30(2):86-90.

  [19] 楊金勇,黃克正,尚勇,等.產品基因研究綜述[J].機械設計,2007,24(4):1-4.

  [20] 奚建清,湯德佑,郭玉彬.數據基因:數據的遺傳信息載體[J].計算機工程,2006,32(17):7-9.

  [21] Pesole G.What is a gene?An updated operational definition[J].Gene,2008,417(1-2):1-4.

  [22] 趙艷麗,許炎,李遙潔,等.量子化學在金屬配合物中的應用進展[J].廣東化工,2010,37(9):75-76.

  [23] 李梅杰.核酸自由基性質和損傷機理的量子化學研究[D].合肥:中國科學技術大學化學與材料科學學院,2007.

  [24] Starikov E B.Quantum chemistry of nucleic acids:how it could help and when it is necessary[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2002,3:147-164.

  [25] 于芳.酰胺類化合物與DNA堿基相互作用的理論研究[M].江蘇:江南大學應用化學系,2009.

  [26] Simmerling C,Strockbine & Roitberg A E.All-atom structure prediction and folding simulations of a stable protein[J].Journal of the American Chemical Society,2002,124:11258-11259.

  [27] Berriz G F,Shakhnovich E I. Characterization of the folding kinetics of three-helix bundle protein via a minimalist Langevin model[J].Journal of Molecular Biology,2001,310:673-685.

  [28] Daggett V,Fersht A R.Is there a unifying mechanism for protein folding[J].Trends in Biochemical Sciences,2003, 28:18-25.

  [29] Shoji A,Souma H,Ozaki T,et al.Precise structural analysis of α-helical poly(L-alanine)by quantum chemical calculation[J].Journal of Molecular Structure,2008,889:104-111.

【基因論文】相關文章:

基因的作文11-26

《基因暢想》教案08-25

基因突變和基因重組的教案(精選7篇)02-21

傳承紅色基因征文精選03-20

《轉基因食品》閱讀答案11-13

基因檢測名言230句08-03

《基因的結構》評課稿01-19

《轉基因食品》閱讀答案11-13

基因控制生物的性狀說課稿04-29

《大腦、智商與基因》閱讀答案09-18

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
亚洲AV综合AⅤ国产AV综合 | 亚洲综合色在线综合色 | 日韩欧美中文字幕在线地址一 | 日韩国产精品免费人成视频 | 先锋影音资源国产性爱教学 | 亚洲欧美日本韩国综合区 |