- 相關推薦
函數的奇偶性說課稿設計
函數的奇偶性說課稿(一)
一、教材分析
1.教材所處的地位和作用
"奇偶性"是人教A版第一章"集合與函數概念"的第3節"函數的基本性質"的第2小節。
奇偶性是函數的一條重要性質,教材從學生熟悉的 及 入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著承上啟下的重要作用。
2.學情分析
從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了一定數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。
從學生的思維發展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題。
3.教學目標
基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:
【知識與技能】
1.能判斷一些簡單函數的奇偶性。
2.能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。
【過程與方法】
經歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態度與價值觀】
通過自主探索,體會數形結合的思想,感受數學的對稱美。
從課堂反應看,基本上達到了預期效果。
4、教學重點和難點
重點:函數奇偶性的概念和幾何意義。
幾年的教學實踐證明,雖然"函數奇偶性"這一節知識點并不是很難理解,但知識點掌握不全面的學生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗 成立即可,而忽視了考慮函數定義域的問題。因此,在介紹奇、偶函數的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把"函數的奇偶性概念"設計為本節課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節課重點問題的講解。
難點:奇偶性概念的數學化提煉過程。
由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把"奇偶性概念的數學化提煉過程"設計為本節課的難點。
二、教法與學法分析
1、教法
根據本節教材內容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態,從而培養思維能力。從課堂反應看,基本上達到了預期效果。
2、學法
讓學生在"觀察一歸納一檢驗一應用"的學習過程中,自主參與知識的發生、發展、形成的過程,從而使學生掌握知識。
三、教學過程
具體的教學過程是師生互動交流的過程,共分六個環節:設疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業,學以致用。下面我對這六個環節進行說明。
(一)設疑導入、觀圖激趣
由于本節內容相對獨立,專題性較強,所以我采用了"開門見山"導入方式,直接點明要學的內容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。
用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。通過讓學生觀察圖片導入新課,既激發了學生濃厚的學習興趣,又為學習新知識作好鋪墊。
(二)指導觀察、形成概念
在這一環節中國共產黨設計了2個探究活動。
探究1 、2 數學中對稱的形式也很多,這節課我們就以函數 和 =︱x︱以及 和 為例展開探究。這個探究主要是通過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。接著學生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學生先把它們具體化,再用數學符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學生發現兩個函數的對稱性反應到函數值上具有的特性, ( )然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個 都成立。 最后給出偶函數(奇函數)定義(板書)。
在這個過程中,學生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。
(三) 學生探索、領會定義
探究3 下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是——定義域關于原點對稱。(突破了本節課的難點)
(四)知識應用,鞏固提高
在這一環節我設計了4道題
例1判斷下列函數的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。
例1設計意圖是歸納出判斷奇偶性的步驟:
(1) 先求定義域,看是否關于原點對稱;
(2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數的奇偶性:
例3 判斷下列函數的奇偶性:
例2、3設計意圖是探究一個函數奇偶性的可能情況有幾種類型?
例4(1)判斷函數 的奇偶性。
(2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個過程中,我重點關注了學生的推理過程的表述。通過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,達到當堂消化吸收的效果。
(五)總結反饋
在以上課堂實錄中充分展示了教法、學法中的互動模式,"問題"貫穿于探究過程的始終,切實體現了啟發式、問題式教學法的特色。
在本節課的最后對知識點進行了簡單回顧,并引導學生總結出本節課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數學綜合能力的很重要的策略。
(六)分層作業,學以致用
必做題:課本第36頁練習第1-2題。
選做題:課本第39頁習題1.3A組第6題。
思考題:課本第39頁習題1.3B組第3題。
設計意圖:面向全體學生,注重個人差異,加強作業的針對性,對學生進行分層作業,既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步達到不同的人在數學上得到不同的發展。
函數的奇偶性說課稿(二)
各位老師,大家好!
今天我說課的課題是高中數學人教A版必修一第一章第三節"函數的基本性質"中的"函數的奇偶性",下面我將從教材分析,教法、學法分析,教學過程,教輔手段,板書設計等方面對本課時的教學設計進行說明。
一、教材分析
(一)教材特點、教材的地位與作用
本節課的主要學習內容是理解函數的奇偶性的概念,掌握利用定義和圖象判斷函數的奇偶性,以及函數奇偶性的幾個性質。
函數的奇偶性是函數中的一個重要內容,它不僅與現實生活中的對稱性密切相關,而且為后面學習冪函數、指數函數、對數函數的性質打下了堅實的基礎。因此本節課的內容是至關重要的,它對知識起到了承上啟下的作用。
(二)重點、難點
1、本課時的教學重點是:函數的奇偶性及其幾何意義。
2、本課時的教學難點是:判斷函數的奇偶性的方法與格式。
(三)教學目標
1、知識與技能:使學生理解函數奇偶性的概念,初步掌握判斷函數奇偶性的方法;
2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數、偶函數等概念;能運用函數奇偶性概念解決簡單的問題;使學生領會數形結合思想方法,培養學生發現問題、分析問題和解決問題的能力。
3、情感態度與價值觀:在奇偶性概念形成過程中,使學生體會數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
二、教法、學法分析
1.教學方法:啟發引導式
結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節課準備采用"引導發現法"進行教學,引導發現法可激發學生學習的積極性和創造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構。使用多媒體輔助教學,突出了知識的產生過程,又增加了課堂的趣味性。
2.學法指導:引導學生采用自主探索與互相協作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習。
三、教輔手段
以學生獨立思考、自主探究、合作交流,教師啟發引導為主,以多媒體演示為輔的教學方式進行教學
四、教學過程
為了達到預期的教學目標,我對整個教學過程進行了系統地規劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發展思維。知識應用,鞏固提高。歸納小結,布置作業。
(一)設疑導入,觀圖激趣
讓學生感受生活中的美:展示圖片蝴蝶,雪花
學生舉例生活中的對稱現象
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點
以y軸為折痕將紙對折,然后以x 軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的痕跡,然后將紙展開。觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點
(二)指導觀察,形成概念
這節課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學們作出函數y=x2的圖象,并觀察這兩個函數圖象的對稱性如何
給出圖象,然后問學生初中是怎樣判斷圖象關于 軸對稱呢此時提出研究方向:今天我們將從數值角度研究圖象的這種特征體現在自變量與函數值之間有何規律
借助課件演示,學生會回答自變量互為相反數,函數值相等。接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示。
思考:由于對任一x,必須有一-x與之對應,因此函數的定義域有什么特征
引導學生發現函數的定義域一定關于原點對稱。根據以上特點,請學生用完整的語言敘述定義,同時給出板書:
(1)函數f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規律是什么呢 (同時打出 y=1/x的圖象讓學生觀察研究)
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義:
(2)函數f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x), 則稱f(x)為奇函數
強調注意點:"定義域關于原點對稱"的條件必不可少。
接著再探究函數奇偶性的判斷方法,根據前面所授知識,歸納步驟:
(1)求出函數的定義域,并判斷是否關于原點對稱
(2)驗證f(-x)=f(x)或f(-x)=-f(x) 3)得出結論
給出例題,加深理解:
例1,利用定義,判斷下列函數的奇偶性:
(1)f(x)= x2+1
(2)f(x)=x3-x
(3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新問題:在例1中的函數中有奇函數,也有偶函數,但象(4)這樣的是什么函數呢?
得到注意點:既不是奇函數也不是偶函數的稱為非奇非偶函數
接著進行課堂鞏固,強調非奇非偶函數的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)
然后根據前面引入知識中,繼續探究函數奇偶性的第二種判斷方法:圖象法:
函數f(x)是奇函數=圖象關于原點對稱
函數f(x)是偶函數=圖象關于y軸對稱
給出例2:書P63例3,再進行當堂鞏固,
1,書P65ex2
2,說出下列函數的奇偶性:
Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3
歸納:對形如:y=xn的函數,若n為偶數則它為偶函數,若n為奇數,則它為奇函數
(三)學生探索,發展思維。
思考:1,函數y=2是什么函數
2,函數y=0有是什么函數
(四)布置作業: 課本P39 習題1.3(A組) 第6題, B組第3
五、板書設計
函數的奇偶性說課稿(三)
一、教材分析
函數是中學數學的重點和難點,函數的思想貫穿于整個高中數學之中。函數的奇偶性是函數中的一個重要內容,它不僅與現實生活中的對稱性密切相關聯,而且為后面學習指、對、冪函數的性質作好了堅實的準備和基礎。因此,本節課的內容是至關重要的,它對知識起到了承上啟下的作用。
二。教學目標
1.知識目標:
理解函數的奇偶性及其幾何意義;學會運用函數圖象理解和研究函數的性質;學會判斷函數的奇偶性。
2.能力目標:
通過函數奇偶性概念的形成過程,培養學生觀察、歸納、抽象的能力,滲透數形結合的數學思想。
3.情感目標:
通過函數的奇偶性教學,培養學生從特殊到一般的概括歸納問題的能力。
三。教學重點和難點
教學重點:函數的奇偶性及其幾何意義。
教學難點:判斷函數的奇偶性的方法與格式。
四、教學方法
為了實現本節課的教學目標,在教法上我采取:
1、通過學生熟悉的函數知識引入課題,為概念學習創設情境,拉近未知與
已知的距離,激發學生求知欲,()調動學生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達。
五、學習方法
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
六。教學程序
(一)創設情景,揭示課題
"對稱"是大自然的一種美,這種"對稱美"在數學中也有大量的反映,讓我們看看下列各函數有什么共性?
觀察下列函數的圖象,總結各函數之間的共性。
f(x)= x2 f(x)=x
x
通過討論歸納:函數 是定義域為全體實數的拋物線;函數f(x)=x是定義域為全體實數的直線;各函數之間的共性為圖象關于 軸對稱。觀察一對關于 軸對稱的點的坐標有什么關系?
歸納:若點 在函數圖象上,則相應的點 也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標一定相等。
(二)互動交流 研討新知
函數的奇偶性定義:
1.偶函數
一般地,對于函數 的定義域內的任意一個 ,都有 ,那么 就叫做偶函數。(學生活動)依照偶函數的定義給出奇函數的定義。
2.奇函數
一般地,對于函數 的定義域的任意一個 ,都有 ,那么 就叫做奇函數。
注意:
1.函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質。
2.由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個 ,則 也一定是定義域內的一個自變量(即定義域關于原點對稱)。
3.具有奇偶性的函數的圖象的特征
偶函數的圖象關于 軸對稱;奇函數的圖象關于原點對稱。
(三)質疑答辯,排難解惑,發展思維。
例1.判斷下列函數是否是偶函數。
(1)
(2)
解:函數 不是偶函數,因為它的定義域關于原點不對稱。
函數 也不是偶函數,因為它的定義域為 ,并不關于原點對稱。
例2.判斷下列函數的奇偶性
(1) (2) (3) (4)
解:(略)
小結:利用定義判斷函數奇偶性的格式步驟:
①首先確定函數的定義域,并判斷其定義域是否關于原點對稱;
②確定 ;
③作出相應結論:
若 ;
若 .
例3.判斷下列函數的奇偶性:
①
②
分析:先驗證函數定義域的對稱性,再考察 .
解:(1) >0且 > = < < ,它具有對稱性。因為 ,所以 是偶函數,不是奇函數。
(2)當 >0時,-<0,于是
當<0時,->0,于是
綜上可知,在r-∪r+上, 是奇函數。
例4.利用函數的奇偶性補全函數的圖象。
教材p41思考題:
規律:偶函數的圖象關于 軸對稱;奇函數的圖象關于原點對稱。
說明:這也可以作為判斷函數奇偶性的依據。
例5.已知 是奇函數,在(0,+∞)上是增函數。
證明: 在(-∞,0)上也是增函數。
證明:(略)
小結:偶函數在關于原點對稱的區間上單調性相反;奇函數在關于原點對稱的區間上單調性一致。
(四)鞏固深化,反饋矯正
(1)課本p42 練習1.2 p46 b組題的1.2.3
(2)判斷下列函數的奇偶性,并說明理由。
①
②
③
④
(五)歸納小結,整體認識
本節主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱,單調性與奇偶性的綜合應用是本節的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。
(六)設置問題,留下懸念
1.書面作業:課本p46習題a組1.3.9.10題
2.設 >0時,
試問:當<0時, 的表達式是什么?
【函數的奇偶性說課稿設計】相關文章:
《函數的奇偶性》說課稿12-23
《函數的奇偶性》說課稿07-28
關于《函數的奇偶性》說課稿5篇06-16
反比例函數的說課稿設計01-12
《函數的概念》說課稿函數的概念的說課稿03-31
《數奇偶性》說課稿12-28
《數的奇偶性》說課稿07-19
數的奇偶性說課稿02-17
《數的奇偶性》說課稿范文07-19