《因數和倍數》說課稿(通用18篇)
作為一名默默奉獻的教育工作者,通常需要準備好一份說課稿,說課稿是進行說課準備的文稿,有著至關重要的作用。說課稿要怎么寫呢?以下是小編收集整理的《因數和倍數》說課稿,僅供參考,大家一起來看看吧。
《因數和倍數》說課稿 1
一、說教材
(1)教材的地位和前后關系:在學習本單元之前,學生已經認識了百以內、千以內、萬以內、億以內以及一些整億的數。但這只是對數字的淺在認識,為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎。
(2)教學目標:
知識、技能目標:
1、讓學生理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。
情感、價值目標:
2、讓學生初步意識到可以從一個新的角度來研究非零自然數的特征及其相互關系,培養學生的觀察、分析和抽象概括能力,體會教學內容的奇妙、有趣,產生對數學的好奇心。
(3)教學重點:
理解倍數和因數的含義與方法
(4)教學難點:
掌握找一個數的倍數和因數的方法。
二、談設計理念
首先從學生的操作入手,由淺入深,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,在操作中引出倍數和因數的概念。
其次以學生討論、交流、相互評價,促成學生對找一個數的倍數、一個數的因數的方法進行優化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。
三、談教學過程:
(1)合作交流、揭示主題
用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。
(2)教學概念、正反促成
利用橫里讀、豎里讀,形成了比較系統的'知識概念,并及時出示整個前提:是在不含0的自然數,讓學生自己舉例,示范說、相互說,最后以教師舉學生不容易想到了例子:4x4=16,18÷6=3,促成學生不僅從乘法的角度去思考,而且也可以從除法的角度進行,也為后面找一個數的因數的方法做好伏筆。
(3)設疑,置疑,激發學生的反思力度
在教學找一個數的倍數時,“才說到12、18是3的倍數(板書:3的倍數),3的倍數是不是只有12、18這兩個數呢?”組織交流:3的倍數有哪些呢?同學互評,交流形成自己的學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“分鐘內你們寫完了嗎?如果再給半分鐘呢?為什么?”
(4)判斷中進行教學內容的遞深,形成了反思、學習、強化的整個學習過程。在學生做出“6是倍數”的正確判斷之后,并不簡單換章,而是以此為契機
“教學找一個數的因數”以談話導入,形成知識相互的聯系與區別,
“談話:必須說清誰是誰的倍數,誰是誰的因數。所以6可能是某些數的倍數,也可能是某些數的因數,那我們就來找一個數的因數。你能找出36所有的因數嗎?”
(5)討論互評,自主學習
放手讓學生學習找一個數的因數,從無序到有序,從自尋到互學,請學生板書,
學生評價,“提問:你是用什么方法找到一個數的因數,可以介紹給大家嗎?還有其他方法嗎?”
1x36=36
36÷1=36
2x18=36
36÷2=18
3x12=36
36÷3=12
4x9=363
6÷4=9
6x6=36
36÷6=6
(6)自主不失指導,掌握不失總結
如:提問:5為什么不是36的因數?(因為36÷5不能整除,有余數)
小結:不能被這個數整除的數就不是這個數的因數。
小結:我們即可以從乘法算式,也可以從除法算式找到一個數的因數。
提問:那對于一個數的因數從36的因數、15的因數這兩個例子又有什么發現?
總結:對于一個數的倍數和因數,它們是不同的,但通過乘法算式、除法算式又是相互依存的、相互聯系的。
四、教學板書
xxxx
《因數和倍數》說課稿 2
一、教學分析
(一)教學內容分析
本課是在學生對乘法運算和對長方形的長、寬、面積的關系已有認識的基礎之上進行教學的,教材設計讓學生經歷操作引入概念、探索尋求方法、觀察概括規律等一系列數學活動,建立倍數和因數的概念,探索求一個數的倍數和因數的方法,概括一個數的倍數和因數的特征,為此,教材安排三個層次的學習活動。第一,用12塊大小同樣的正方形拼長方形,得出乘法算式,進而引出倍數和因數的概念,直觀描述概念的意義。第二,在學生初步感知倍數和因數意義的基礎之上,通過問題引領,引導學生自主探索,合作交流,尋求求一個數的倍數和因數的方法,概括一個數的倍數和因數的特征;第三,概念應用,培養學生運用新知解決實際問題的能力。三部分內容層層遞進,渾然一體,“四基”“兩能”的落實,為后繼學習夯實基礎。
(二)教學對象分析
四年級的學生已經系統掌握了乘除法的意義和運算方法,認識了一個數的幾倍等,經歷過操作、觀察、比較、概括等學習活動,積累了部分數學活動經驗,這些是學習本課內容的基礎。雖然此階段的學生仍以直觀思維為主,但抽象概括的能力也正逐步完善,加之小學生天生的模仿能力,使得探索學習本課知識成為可能。但小學生注意力分配能力不強,紛繁復雜的概念關系和倍數因數的'多樣求法易讓其暈頭轉向,令人欣慰的是小學生思維活躍,對新事物總有一探究竟的欲望,新概念的學習必然會引起其極大的興趣。
(三)教學環境分析
本課,依托多媒體信息技術的支撐,整合了視頻交互系統的攝像、批注、抓捕、音視頻鏈接等多種功能,外顯學生內隱的思維過程,展示學生個性化的思考,有利于強化教學重點,突破教學難點,更好地實現課堂的開放性和交互性。采用“活動單導學”模式,學生自主創新學習,學習輕松愉悅,積極主動。
基于這些思考,我確立了如下教學目標。
二、教學目標
1、初步理解倍數和因數的意義,掌握寫一個數的倍數和因數的方法。
2、通過觀察、交流等數學活動,探索一個數的倍數、因數的特征。
3、進一步感受數學知識的內在聯系,提高數學思維的水平,培養觀察、分析和抽象概括的能力,體會數學內容的奇妙、有趣,產生對數學的好奇心。
三、教學重點、難點
教學重點:理解倍數和因數的意義。
教學難點:探索并掌握找一個數的倍數和因數的方法。
四、教學過程
下面我結合教學流程圖,說說多媒體視頻交互系統如何與本課教學進行有效整合作簡要分析。
整合點一:視頻創設情境,趣味導入揭課題
倍數和因數是表示關系的一類概念,有關系是建立概念的必要條件,為此,鏈接視頻《大頭兒子和小頭爸爸》,以創設情境,“兩個人之間的關系有父子關系,兩個數之間的關系有倍數和因數的關系”,用生活概念類比數學概念,架起生活與數學的橋梁,激發了學生學習的興趣,巧妙地揭示了課題。
整合點二:批注整理語序,形象支撐突重點
活動一,拼圖寫算式,引入倍數和因數的概念。因為倍數和因數之間關系復雜,描述概念的語句冗長,學生常常被繞暈了頭,甚至混淆概念。課中,采用白板的批注功能描出“語序”,圖示注明概念表述的語言順序,輔之以形象支撐,降低了學習難度,突出了教學重點。
整合點三:抓捕學習信息,以學定教破難點
活動二和活動三,探索方法,概括特征。學生的思維具有獨特性,寫倍數和因數的方法也多樣化,形成了教學的難點。為此,設計“學”在“教”前,讓學生先行嘗試,采用攝像擇點抓捕(課件呈現捕獲圖片),調研學情,對比全面的和漏缺的、有序的和雜亂的……捕獲差異資源,把“學”的信息變為“教”的資源,讓“學”為“教”所用(課件呈現三個問題),引導學生在互動探究中互補,從而建構知識體系,總結出寫倍數和因數的方法。隨后再次采用電子白板的隨機批注功能,聚焦倍數和因數中最大的和最小的,數一數數量,拖拉板書,總結出一個數的倍數和因數的特征。在視頻捕獲、聚焦對比、互動交流中突破了教學難點。
整合點四:鏈接互動游戲,鞏固新知巧檢測
借助白板的視頻鏈接和PPT的批注功能,設計“心隨我動,快樂大轉盤”游戲,鞏固概念,檢測新知:說說兩個數的關系,任意轉動一次,用上倍數因數說出所指數和指定數的關系;設計轉盤上的數字,寫出指定數的倍數和因數,巧妙地鞏固了新知,最后完成檢測作業。
五、教學感悟
本課,有了多媒體視頻交互系統的支撐,在“技術”與“學科”的整合之下,用動畫《大頭兒子和小頭爸爸》的片段創設趣味性情境,架設了數學與生活的橋梁,引發學生形成了積極的學習心向;調研學情,視頻擇點抓捕,捕獲“學”的差異資源為“教”所用,實現了知識的自主生成;巧用批注以聚焦觀察,在互動互補的快捷反饋中,強化了教學重點,突破了教學難點;課末,“心隨我動,快樂大轉盤”游戲更是把課堂學習推向高潮,引領學生享受著幸福的學習之旅。
以上是我說課的全部內容,敬請指導,謝謝!
《因數和倍數》說課稿 3
一、學情分析
學生在平時學習中缺少主動性,一部分學生怕困難,缺乏獨立思考的習慣,同時考慮問題也不夠全面。在本單元的教學中,需要調動學生學習的積極性,提高學生課堂學習的參與性,體驗成功的樂趣,通過學生的親自探索和合作交流,來達到學習知識,掌握所學知識的目的。同時感受數學中的奧妙。
二、教材分析
《倍數和因數》是冀教版第五單元的內容,也是小學階段“數與代數”部分的最重要知識之一,在四年級教材中占有相當重要的內容。本單元是在學生認識了億以內的數,已經掌握整數加減乘除四則計算的基礎上學習的。這一單元更為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎,可以說這一單元對以后的數學學習起著非常重要的作用。這一單元主要包括了五個課時。第一課時,自然數。第二課時倍數,第三課時2.5的倍數的`特征,第四課時3的倍數的特征,第五課時認識因數、質數、合數,第六課時,分解質因數。第七課時,綜合練習
在對整數和自然數的認識中,概念較多,而且容易混淆,難以理解和掌握,本套教材在整數概念的認識和相關計算的編排上,采取與相關知識整合、分散編排的方式,降低學習的難度,增強知識的應用性。
三、單元教學目標
1、了解自然數、奇數、偶數、質數、合數,并能進行判斷。
2、了解倍數的含義,在1~100的自然樹中,能找出10以內自然數的所有倍數,知道2。3。5的倍數的特征,會判斷一個數是不是2。3。5的倍數。
3、了解乘數也叫因數,在1~100的自然樹中,能找出一個自然數的所有因數,會分解質因數。
4、在觀察、探索、猜想、驗證的過程中,能進行有條理的思考,能比較清楚的表達自己的思考過程與結果。
5、愿意了解社會生活中與數學有關的信息,主動參與數學學習活動中;初步養成樂于思考、勇于探索數學問題的良好品質。
四、重點:1、找一個數的倍數的方法。
2、找一個數的因數的方法。
3、尋找2、3、5的倍數的特征。
4、區分倍數和因數
5、區分質數和合數
6、分解質因數。
五、說教法。說學法
1、在第一課時自然數這一課時,有兩個知識點,認識自然數,認識奇數和偶數。根據本節教學內容的特點,立足于小學四年級學生的思維,決定采用合作探究式的教學方法,通過啟發引導法,觀察發現法以及直接講授法來指導學生學習新知,培養學生學習的數學的興趣。
2、在第二課時《倍數》這一課時,有兩個知識點,認識倍數是基礎,找一個數的倍數的方法是重點,也是難點。我會創設情景,通過開放性問題的設置來啟發學生思考,在思考中體會數學概念形成過程中所蘊涵的數學方法,使之獲得內心感受。
3、在第三、四課時《2、3、5的倍數的特征》這兩個課時,這兩個課時都是找規律。我會通過啟發誘導、讓學生小組合作探究的方式來學習新知。
4、在第五課時《認識因數、質數、合數》這一課時,我會利用故事激趣,設疑導入,利用多媒體課件展示“哥德巴赫猜想”這個故事,引入質數、合數的概念,舉例講授質數、合數的概念,通過練習讓學習加深理解。然后會讓學生合作探究找一個因數的方法。從而導入這節課的教學活動。
5、在第六課時《分解質因數》這一課時,通過復習因數質數、合數導入新知,然后在合作、交流、討論中探究新知,最后讓學生通過小組合作交流討論來探究分解質因數的方法。
《因數和倍數》說課稿 4
一、教學分析
(一)教學內容分析
本課教學內容是國標蘇教版小學數學四年級(下冊)第九單元的第一課時,教材第70~72頁。
例1通過用12個同樣大的正方形拼成不同長方形的操作,讓學生寫出不同的乘法算式,在此基礎上教學倍數和因數的意義。例2教學找一個數的倍數,并結合“試一試”引導發現一個數倍數的特征。例3教學找一個數的因數,再結合“試一試”引導發現一個數因數的特征。
(二)教學對象分析
在學習本單元之前,學生已經分階段認識了百以內、千以內、萬以內、億以內以及一些整億的數。較為系統地掌握了十進制計數法,同時也基本完成了整數四則運算的學習。但這只是對數字的淺在認識,為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎。
(三)教學環境分析
這節課,我采用“活動單”導學模式,依托多媒體互動視頻教學系統來開展各項活動,力求通過多媒體互動視頻教學系統將抽象的概念形象具體地呈現出來,將學生操作和思維清晰地展示出來,從而使學生更好地理解和掌握本節課的學習內容。
二、教學目標
知識技能:理解倍數和因數的意義,掌握找一個數的倍數和因數的方法,發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。
數學思考:初步意識到可以從一個數的角度來研究非零自然數的特征及其相互關系。
解決問題:在探索一個數的倍數和因數的過程中培養學生觀察、分析、概括能力,培養有序思考能力。
情感態度:讓學生學會用數學的眼光觀察生活、思考問題,能積極參與對數學問題的探究活動,真真切切地體驗學習數學的快樂和價值。
三、教學重點、難點
理解倍數和因數的含義,能按要求找出一個數的倍數和因數。
四、教學流程
整合點1:用圖像聲音創設情境
第一步,情境導入。我運用多媒體創設了幫助神探柯南破譯密碼的問題情境,通過這樣的問題,激發學生的探究欲望。在突出“倍數”和“因數”這兩個關鍵詞之后,板書課題,揭示本節課的教學內容。
整合點2:用直觀演示深化體驗
在“建立概念”部分,通過這樣幾個層次,進行教學。學生根據活動要求操作思考,我把學生的操作情況通過攝像頭整體投射到屏幕上,根據學生的匯報把相應的組滿屏顯示,并把各種拼法及對應的算式剪切入電子白板中,為下一步教學做好準備。通過旋轉操作,讓學生直觀感受到這樣的兩個圖形代表同一種拼法。根據學生得出的乘法算式,拖出本節課的兩個概念,并讓學生舉一反三,說說這兩個算式中數字間的倍數和因數關系。
整合點3:用動態展示突出本質
在“應用概念”部分,通過這樣幾個環節展開教學。首先讓學生自己對這些問題進行探索,在學生匯報找到的`3的倍數時,有選擇性地進行截屏,同時展示學生多樣化的方法,讓學生比較、辨析、優化,建立有序地尋找一個數倍數的方法。根據3個實例,歸納倍數的特征,我使用白板的圈畫功能,形象地突出了倍數的特點,突破了難點。
接著教學找一個數因數的方法,歸納因數的特征。在學生獨立思考、初步探究后,我將學生中兩種典型的想法,同時呈現在白板上,這樣學生的思維過程就清晰地展示了出來,在此基礎上點撥提升,通過層技術顯示幾乘幾等于36和36除以幾等于幾,這兩個一般性的算式,并通過圈畫突出列舉的有序性,強調“成對找,分開寫”的口訣。接著歸納因數的特征,我仍使用白板的圈畫功能,突顯了因數的特征。新授結束后,通過這樣的練習,讓學生自己在白板上操作,及時進行方法的鞏固。
由于本節課的知識點比較多,所以在回顧總結時,我通過重點畫面的回放,幫助學生梳理、回顧本節課的學習內容,再讓學生用本節課所學知識解決課始的問題,有問有答,前后呼應。最后進行檢測反饋。
教學感悟
多媒體互動視頻教學系統有著強大的人機交互功能和便捷的信息采集功能,能夠將課堂中的生成性資源即時保存,隨時調用。在本節課中,學生操作、探究得到的各種生成性資源被有選擇地展現出來,在此基礎上點撥提升,言之有物、針對性強;而且這些生成性資源還是下一環節必要的教學素材,這樣環環相扣、前后貫通,一步步引領學生走進倍數和因數的世界。
《因數和倍數》說課稿 5
一、教學目標
(一)知識與技能
理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法,發現一個數的倍數、因數中最大的數、最小的數,及因數和倍數個數方面的特征。
(二)過程與方法
通過整數的乘除運算認識因數和倍數的意義,自主探索和總結出求一個數的因數和倍數的方法。
(三)情感態度和價值觀
在探索的過程中體會數學知識之間的內在聯系,在解決問題的過程中培養學生思維的有序性和條理性。
二、教學重難點
教學重點:理解因數和倍數的含義。
教學難點:自主探索有序地找一個數的因數和倍數的方法。
三、教學準備
教學課件。
四、教學過程
(一)理解因數和倍數的意義
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)
第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。
2.明確因數和倍數的意義。
(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?
(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。
【設計意圖】引導學生從“整數的除法算式”中認識因數和倍數的意義,簡潔明了,同時為學習因數和倍數的依存關系進行有效鋪墊。
3.理解因數和倍數的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?
【設計意圖】引導學生在理解的基礎上進行正確表述:因數和倍數是相互依存的,不是單獨存在的。我們不能說4是因數,24是倍數,而應該說4是24的因數,24是4的倍數。
4.理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?
課件出示:
乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。
(2)今天學的“倍數”與以前的“倍”又有什么不同呢?
“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。
(3)交流匯報。
【設計意圖】“一個數的因數和倍數”與學生已學過的乘法算式中的“因數”以及“倍”的概念既有聯系又有區別,學生比較容易混淆,這也是學習一個數的“因數”和“倍數”意義的難點。通過觀察、對比、交流,引導學生發現一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(二)找一個數的因數
教學例2:
1.探究找18的因數的方法。
(1)18的因數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。
因為18÷1=18,所以1和18是18的.因數。
因為18÷2=9,所以2和9是18的因數。
因為18÷3=6,所以3和6是18的因數。
方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。
因為1x18=18,所以1和18是18的因數。
因為2x9=18,所以2和9是18的因數。
因為3x6=18,所以3和6是18的因數。
2.明確18的因數的表示方法。
(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數有:1,2,3,6,9,18。
圖示法(如下圖所示)。
3.練習找一個數的因數。
(1)你能找出30的因數有哪些嗎?36的因數呢?
(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?
【設計意圖】讓學生通過自主探索、交流,獲得找一個數的因數的不同方法,在練習中體會“一對一對”有序地找一個數的因數,避免遺漏或重復。初步感受一個數的因數的個數是有限的,以及“最大因數、最小因數”的特征。
(三)找一個數的倍數
教學例3:
1.探究找2的倍數的方法。
(1)2的倍數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:利用除法算式找2的倍數。
因為2÷2=1,所以2是2的倍數。
因為4÷2=2,所以4是2的倍數。
因為6÷2=3,所以6是2的倍數。……
方法二:利用乘法算式找2的倍數。
因為2x1=2,所以2是2的倍數。
因為2x2=4,所以4是2的倍數。
因為2x3=6,所以6是2的倍數。……
(3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?
(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、圖示法)
2.練習找一個數的倍數。
你能找出3的倍數有哪些嗎?5的倍數呢?
【設計意圖】在理解“倍數”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數的倍數的個數是無限的,以及“最小倍數”的特征。
(四)一個數的因數與倍數的特征
1.從前面找因數和倍數的過程中,你有什么發現?
2.討論交流。
3.歸納總結。
預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。
(五)鞏固練習
1.課件出示教材第7頁練習二第1題。
(1)想一想,怎樣找不會遺漏、不會重復?
(2)哪些數既是36的因數,也是60的因數?
【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數的因數”“一個數最大的因數是它本身”和“一個數的因數的個數是有限的”。同時,滲透兩個數的“公因數”的意義。
2.課件出示教材第7頁練習二第3題。
(1)學生獨立完成,交流答案。
(2)思考:5的倍數有什么特征?
【設計意圖】滲透5的倍數的特征。
3.課件出示教材第7頁練習二第5題。
(1)學生獨立完成,交流答案。
(2)你能改正錯誤的說法嗎?
(六)全課總結,交流收獲
這節課我們學了哪些知識?你有什么收獲?
《因數和倍數》說課稿 6
教學內容:
人教版小學數學第十冊教材12-13<<因數和倍數>>
教學要求:
1、 通過學生自學讓學生理解掌握因數和倍數的意義,明確因數和倍數是相互依存的。
2 、通過學生合作學習,讓學生掌握找一個數的因數的方法。
3、 培養學生的自學能力、觀察能力、抽象概括能力以及學生的合作探究能力。
4 、培養學生的合作意識、探究意識、以及熱愛學習數學的情感。
教學重點:
理解因數和倍數的意義
教學重點:
掌握找一個數因數的方法
教學過程:
一 、創設情境,引入新課
師:同學們,你們喜歡唱歌嗎?
生:喜歡。
師:今天老師特別想聽一首歌《世上只有媽媽好》,你們愿意唱給老師聽嗎?
生:(可以)生唱。
師:誰愿意介紹一下自己媽媽姓什么嗎?
生:我媽媽姓馬。
師:我們叫她馬阿姨可以嗎?
生:可以。
師:你能用馬阿姨和陳果說一句話嗎?
生:馬阿姨是陳果的媽媽,陳果是馬阿姨的兒子。
師:能不能單獨的說馬阿姨是媽媽,陳果是兒子?
生:不能。因為他們不能分開,必須說誰是誰的媽媽,誰是誰的兒子。
師:其實在數學中也有這樣的兩個數,它們是相互依存的,他們也是不能單獨存在的,那就是——《因數和倍數》,今天我們一起來學習。
師:板書因數和倍數。請同學們齊讀課題。
生:齊讀課題
師:讀了課題你想知道什么?
生1:想知道因數和倍數的意義。
生2:怎樣找一個數的因數。
生3:怎樣找一個數的倍數?
........
師:這些問題是老師告訴你們,還是你們自己去學習?
生:我們自己學習。
【評析:用學生最熟悉的歌創設情境,既激發了學生的興趣,又拉近了師生之間的距離,創設了一個寬松、和諧的氛圍,以此從熟悉的母子或父子關系出發,讓學生理解了相互依存的關系,為理解倍數和因數的相互依存關系作鋪墊,體現了數學來源與生活。】
二、自學引導
1 、請同學們帶著想知道的問題先自學教材12-13,然后完成學案一
2 、檢測自學情況
(一)、填空
(1) 3x4=12
3是12的( ) 4也是12的( )
12是3的( ) 12也是4的( )
2x6=12
2和6是12的( ) 12是2和6的( )
1x12=12
1和12是12的( ) 12是1和12的( )
12的因數有:( )
(2) axb=c (a、b、c均為非零自然數)
a是c的( ) b是c的( )
c是a的( ) c是b的( )
(二)、判斷
(1)、因為0.8x5=4 所以0.8是4的因數。( )
(2)、因為3x6=18 所以18是倍數,3和6是因數。( )
(3)、因為24÷6=4所以24是6的倍數,4是24的因數。
(生自學并完成學案一,師指導)
師:有誰愿意把你的學習作品展示大家。
生:展示學習作品。
師:看了張江楠的學習作品你想說點什么?(沒有學生舉手)你們沒有問題,那老師有問題請教你們了。
師: 在 axb=c 中, 為什么a、b、c均為非零自然數?
生:為了方便,我們研究因數和倍數只是整數(不包括零)
師:請同學齊讀這句話。
生:齊讀
師:因為0.8x5=4 所以0.8是4的因數。( )這句話對嗎?
生:不對,因為0.8是小數不是整數。
師:因為3x6=18 ,所以18是倍數,3和6是因數。( )這句話對嗎?
生:不對,因為因數和倍數是相互依存的,是不能單獨存在的。
師:因為24÷6=4所以24是6的倍數,4是24的因數。
生:對
師:請讀 axb=c (a、b、c均為非零自然數)
a是c的( 因數 ) b是c的( 因數 )
c是a的(倍數 ) c是b的( 倍數 )
生:齊讀。
師:通過你們的自學初步理解因數和倍數的意義。你們會找一個數的因數嗎?
生:會
師:我們試試行嗎?
生:行
師:來個大的,還是小的。
生:來個大的。
師:30可以嗎?
生:可以
師:學號是30的因數的`請起立,(不完整)看來找一或幾個不難,要找得既準確又完整,就需要方法了。你們有沒有信心自己去探究。
生:有
師:那好,你們4人小組合作找出30的因數,并完成學案二。
【評析:把課堂留給學生,讓學生通過自學完成學案,體現了學在前,老師指導在后,充分讓學生獨立思考,獲取知識。這樣通過自學——完成學案——適時指導,讓學生真正成為學習的主人,理解因數和倍數的意義。】
三 、合作學習探究找一個數因數的方法
1 、小組合作找出30的因數有哪些?(有乘法和除法兩種,用你們最喜歡的方法)。再組內討論以下三個問題
( )x( )=( )
( )x( )=( )
( )x( )=( )
( )x( )=( )
........
30的因數有:( )
( )÷( )=( )
( )÷( )=( )
( )÷( )=( )
( )÷( )=( )
........
30的因數有:( )
(1)你們是怎樣找一個數的因數的?
(2)你們找一個數的因數是怎樣才能做到既準確,又完整的?
(3)你們找一個數的因數是找到什么時候為止?
2、小組匯報
生1:30的因數有(1 2 3 5 6 10 15 30)
師:你是怎樣找一個數的因數的?
生1:1x30=30找到1 30
2x15=30找到2 15
3x1030找到3 10
5x6=30找到5 6
生2::30÷1=30找到1 30
30÷2=15找到2 15
30÷3=10找到3 10
30÷5=6找到5 6
........
生5:從1開始去乘一個數等于30的兩個數就是30的因數。
生6:用30除以1到它本身能整除的就是30的因數。
生7:從1開始有序成對找到重復或接近為止
3 、引導學生總結找一個數因數的方法
從1開始用乘法或除法有序成對的找,找到重復或接近為止。
【評析:找一個數的因數級發及發現歸納其特點,教師讓學生通過小組合作,相互評價,培養學生的合作意識,發揮學生的合作能力,歸納出找一個因數的方法,充分體現了學生是主體。】
四、目標檢測
1、 找36、28的因數
(采用師生對口令方法,強調重復寫一個)
2、先找出下列各數的因數,再觀察這幾組數據你有什發現寫在括號里。
8的因數有:( )
11的因數有:( )
15的因數有:( )
24的因數有:( )
你的發現是( )
3你的學號是( )
你學號的因數有( )
學生完成后展示學習作品并匯報
生1:我發現了每個數的因數都有1。
生2::我發現了每個數的因數都有他本身。
........
生6:我發現了一個數的因數最小是1,最大是它本身。
生7:我發現了一個數的因數的個數是有限的,因為一個數的因數最小是1,最大是它本身
生齊讀一個數的因數最小是1,最大是它本身。一個數的因數的個數是有限的。
4、游戲:
師:學號是25的因數的同學請起立。
學號是48的因數的同學請起立。
學號是18的因數的同學請起立。
1號你為什么不坐下
生:因為1是所有自然數的因數,坐下了還要起立。
師:同學們想挑戰老師嗎(想)比老師叫起立的人多。
生1:30的因數
生2:學號有兩個因數的請起立。
生3:學號有三個因數的請起立。
........
生7:學號有因數1請起立。
生8:學號因數最大是自己學號的請起立。
【評析:找一個數的因數,歸納發現找因數的方法并不是難事,而對“一個數最大因數是它本身,最小因數是1”的理解有一定難度。教師在讓學生做練習的同時發現規律,同時通過游戲加深了對知識的理解,在游戲中體會數學的樂趣。實現了巧練、活練,真正把數學運用于生活。】
五、總結反思
1、這節課你有什么收獲?
2、如果還有不懂的小組內討論。
【總評析:本節課總的可用六個字來概括,“引撥補、疑思用”師,即,教師:引——撥——補;學生:疑——思——用。學生通過自學,教師引導,產生疑問,在教師的指引下進行小組合作探究、分析、領悟,再加上教師的點撥,讓全體學生進行反思、掌握學法、建構數學模型,找一個數的因數的方法,讓學生從感性認識——理性認識——實踐運用——拓展提高,經歷了學習數學的過程,真正體會了學習數學的樂趣。本節課“雖已畢,但趣猶在”,留給我們回味的很多。】
板書設計:
因數和倍數
30的因數有:1 2 3 5 6 10 15 30
有序 成對 準確 完整
《因數和倍數》說課稿 7
教學目標:
1、理解質數和合數的概念,并能判斷一個數是質數還是合數,會把自然數按約數的個數進行分類。
2、培養學生自主探索、獨立思考、合作交流的能力。
3、培養學生敢于探索科學之謎的精神,充分展示數學自身的魅力。
教學重點:
1、理解掌握質數、合數的概念。
2、初步學會準確判斷一個數是質數還是合數。教學難點:區分奇數、質數、偶數、合數。
教學過程:
一、探究發現,總結概念:
1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的'三個正方形拼成一個長方形,你能拼出幾個不同的長方形?學生獨立思考,然后全班交流。
2、師:這樣的四個小正方形能拼出幾個不同的長方形?學生各自獨立思考,想像后舉手回答。
3、師:同學們再想一下,如果有12個這樣的小正方形,你能拼出幾個不同的長方形?師:我看到許多同學不用畫就已經知道了。(指名說一說)
4、師:同學們,如果給出的正方形的個數越多,那拼出的不同的長方形的個數——,你覺得會怎么樣?
學生幾乎是異口同聲地說:會越多。
師:確定嗎?(引導學生展開討論。)
5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數是什么數的時候,只能拼一種?什么情況下拼得的長方形不止一種?并舉例說明。
先讓學生小組討論,然后全班交流,師根據學生的回答板書。
師:同學們,像上面這些數(板書的3、13、7、5、11等數),在數學上我們把它們叫做質數,下面的這些數(4、6、8、9、10、12、14、15等數)我們把它們叫做合數。那究竟什么樣的數叫質數,什么樣的數叫合數呢?學生獨立思考后,在小組內進行交流,然后再全班交流。
引導學生總結質數和合數的概念,結合學生回答,教師板書:(略)
6、讓學生舉例說說哪些數是質數,哪些數是合數,并說出理由。
7、師:那你們認為“1”是什么數?讓學生獨立思考,后展開討論。
二、動手操作,制質數表。
1、師出示:73。讓學生思考著它是不是質數。
師:要想馬上知道73是什么數還真不容易。如果有質數表可查就方便了。(同學們都說“是呀”。)師:這表從哪來呢? (教師出示百以內數表)這上面是1到100這100個數,它不是質數表,你們能不能想辦法找出100以內的質數,制成質數表?誰來說說自己的想法?(讓學生充分發表自己的想法。)
2、讓學生動手制作質數表。
3、集體交流方法。
三、練習鞏固:完成練習四第
1、2題。
四、課題小結:
這節課你在激烈的討論中有什么收獲?
《因數和倍數》說課稿 8
教學目標:
1、依據倍數和因數的含義和已有的乘除法知識,自主探索總結找一個數的倍數和因數的方法。
2、使學生在認識倍數和因數以及探索一個數的倍數或因數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。
教學重點:
理解因數和倍數的含義。
教學難點:
自主探索并總結找一個數的倍數和因數的方法。
教學過程:
一、情境激趣。
腦筋急轉彎:有三個人,他們中有2個爸爸,2個兒子,這是怎么回事?
教師說明:人和人之間的關系是相互依存,數和數之間也是相互依存的。
揭題:
二、初步認識倍數和因數。
1、創設情境。
用12個同樣大的正方形拼成一個長方形,可以怎么拼?請同學們先想象一下,然后說出你的擺法,并用乘法算式表示出來。
學生匯報拼法,教師依次展示長方形的拼圖,并板書:
4x3=1
26x2=12
12x1=12
教師根據4x3=12揭示:4x3=12
12是4的倍數,12也是3的倍數,4和3都是12的因數。提出要求:你能用倍數和因數說一說6x2=12
12x1=12嗎?
2、深化感知。
(1)你能舉出一些算式,說說誰是誰的倍數,誰是誰的因數嗎?
教師說明:為了方便,我們在研究倍數和因數時,所說的數一般指不是0的自然數。
三、探求一個數的倍數。
1、設疑。
在剛才的學習中,我們知道了3的.倍數有12、18。除了12、18還有別的嗎?請在紙上寫出3的倍數。你能完成得又對又好嗎?。學生在書寫過程中引發沖突:為什么停下來不寫了?有什么困難嗎?引導學生討論后達成共識:加省略號表示寫不完。
2、交流。
揭示“有序”,為什么要有序地寫倍數呢?全班討論:“你是怎么寫3的倍數的?”。
3x
13x
2 3x
3……
3
3+3
6+3
……
一三得三二三得六三三得九
引導學生討論得出:用依次x
1、x
2、x3……寫出3的倍數。
3、深化:請寫出2的倍數,5的倍數。
4、引導觀察,發現規律。
小組討論:觀察這三道例子,你有什么發現?全班交流,概括規律。
5、小結:發現這些規律可以更好地幫助我們尋找一個數的倍數。
四、探求一個數的因數。
1、設疑。
剛剛我們學會了找一個數的倍數,接下來我們來找一個數的因數。
請寫出36的所有因數,
2、組織討論。
你是怎么找36的因數的?
( )x( )=36從一道乘法算式中可以找到2個36的因數,6x6=36呢?
36÷( )=( )從一道除法算式中也可以找到2個36的因數。
3、討論“多”。問:寫得完嗎?你可以按照什么順序寫?
師動畫演示36的因數(從兩端往中間寫),同時指出:當兩個因數越來越接近時,也就快要寫完了。
4、鞏固深化。
請寫出15的因數,16的因數。學生練習后組織評講。
5、引導觀察,發現規律。
問:通過觀察這三道例子,你能發現什么規律?
6、小結:寫一個數的因數時可以從1和它本身來寫,從小到大依次尋找。
五、鞏固拓展。
1、快樂大轉盤
2、猜數游戲。
六、老師總結:
利用微課對整節課做一個總結。
七、學生總結:
在這節課的學習中,有哪些地方給你留下了深刻的印象?
《因數和倍數》說課稿 9
教學目標:
1.通過動手操作和寫不同的乘法算式,認識倍數和因數。
2.依據倍數和因數的含義和已有的乘除法知識,自主探索并總結找一個數的倍數和因數的方法。
3.在探索中,培養學生抽象,概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
教學重點、難點分析:
由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確了一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節課的教學我把重點定位于理解因數和倍數的含義。教學難點是自主探索并總結找一個數的倍數和因數的方法。
教學課時:
人教版五年級下冊第二單元《因數與倍數》第一課時
教具學具準備:
1.學生每人準備12個大小完全相同的小正方形,一張寫有自己學號的卡片。
2.教師準備多媒體課件。
一、創設情景,明確探究目標
師:人與人之間存在著許多種關系,我和你們的關系是……?
生:師生關系。
師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)
1.操作激活。
師:我們已經認識了哪幾類數?
生:自然數,小數,分數。
師:現在我們來研究自然數中數與數之間的關系。請你們用12個小正方形擺成不同的長方形,并根據擺成的不同情況寫出乘、除算式。
2.全班交流。
1x12=12 2x6=12 3x4=12
12x1=12 6x2=12 4x3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
師:在這3組乘、除法算式中,都有什么共同點?
生匯報。
師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關系還有一種說法,你們想知道嗎?請看課本p12。
師:2和6與12的關系還可以怎樣說呢?
生:2和6是12的因數,12是2的倍數,也是6的倍數。
師:也就是說,2和12、6的關系是因數和倍數的關系,這幾組算式中,誰和誰還有因數和倍數的關系?
小組合作,交流匯報。
師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數。
揭示課題:今天我們要根據這些算式研究數學新本領。因數和倍數。
師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
3.舉例內化:
你能寫出一個算式,讓你的同桌找一找因數和倍數嗎?(學生互說,教師巡視找出典型例子)
4.下面的說法對嗎?說出理由。
(1)48是6的倍數。
(2)在13÷4=3……1中,13是4的倍數。
(3)因為3x6=18,所以18是倍數,3和6是因數。
師:第(3)題有兩種不同的意見,請反對意見的同學說說理由。
生:因為沒有說明18是誰的倍數,所以不對。
師:你認為怎樣說才正確呢?
生:我認為應該這么說:18是3和6的倍數,3和6是18的因數。
師強調:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數),也就是說:因數和倍數不能單獨存在。
二、自主探究,找因數和倍數
1.拓展提升,主動建構:
⑴遷移嘗試:請學生試著找出36的所有因數。
⑵交流方法:教師即時捕捉開發學生在課堂上的'基礎性教學資源,并及時創生為生成性的教學資源,引導學生在交流中評價,在評價中探究,在發現中建構。預計學生會有這樣幾種情況出現:一是寫得多與少的區別,二是找的方法上的區別。具體表現為:一是無序、沒有方法地寫出了一些,如2,3,6,而且僅此寫出了幾個;二是有順序地用乘法( )x( )=36的方法,一對一對地寫出了1,36,2,18,3,12,4,9,6,但沒有按照從小到大的順序寫;三是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫出: 1,2,3,4,6,9,12,18,36。
⑶啟迪思考:怎樣找才能不重復不遺漏?
小組合作,自主探究,匯報交流。
找一個數的因數時要做到不重復也不遺漏,方法可以有:
用乘法( )x( )=36的方法,一對一對地寫;
或者是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫。
36的因數有:1,2,3,4,6,9,12,18,36。(板書)
⑷試一試找20的所有因數。
⑸介紹36的因數的另一種寫法——集合
用集合形式寫18的因數
2.創設情境,自主探究:
請學生寫出6的倍數。預計學生在寫6的倍數時,會有這樣幾種情況出現:一是寫得多與少的區別,二是找的方法上的區別。具體表現為:一是無序、沒有方法地寫出了一些,6二是有順序地用乘法口訣寫6,三是用加法的方法,每次遞加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法寫。同時可能還會有學生在教師宣布時間到的時候會因為6的倍數寫不完而抱怨時間太少。
請寫得又多又快的同學介紹自己的好方法、小竅門。在此基礎上交流評價小結方法。(評價時突出有序思維的策略)
3.遷移內化,自主探究:
⑴嘗試遷移:請學生嘗試遷移,用自己喜歡的方法寫出2的倍數和5,4,7的倍數。
2的倍數有:2,4,6,8,10,12……
5的倍數有:5,10,15,20,25……
⑵引導觀察:請學生觀察以上這些數的倍數,有什么發現?
(一個數的倍數的個數是無限的,一個數最小的倍數是它本身。)
(3)還記得因數嗎,出示課件
觀察:看一看這些數的因數,你有什么發現?(36最小的因數是1,最大的是36,……一個數最小的因數是1,最大的因數是它本身。)
三、變式拓展,實踐應用
指導學生做書本“練習二”的第2題和第3題。
四、全課總結
師:今天這節課我們一起學習了“約數和倍數”,你有哪些收獲?
課堂練習:游戲:“我的朋友在哪里?”
游戲規則:
(1)一位同學提出所要找的朋友的要求,例:“我的因數在哪里?”或“我的倍數在哪里?”
(2)相應學號的同學站起來,其他同學判斷是否正確。
作業安排:
引導學生根據實際猜老師年齡,給出范圍:老師的年齡既是2的倍數也是5的倍數
《因數和倍數》說課稿 10
教學目標:
1、讓學生理解倍數和因數的意義,掌握找一個非零自然數的倍數與因數的方法,發現一個非零自然數的倍數和因數中最大的數、最小的數以及一個非零自然數的倍數與因數個數的特征。
2、讓學生初步意識到可以從一個新的角度,即倍數和因數的角度來研究非零自然數的特征及其相互關系,培養學生觀察、分析與抽象概括的能力,體會數學學習的奇妙,對數學產生好奇心。
教學重點:理解倍數和因數的意義。
教學難點:從倍數和因數的意義出發,尋找一個非零自然數的倍數與因數。
教學過程:
一、直接導入
師:自然數是我們在數的王國中認識的第一種數,今天我們將從一個特定的角度,即倍數和因數的角度來研究自然數的特征及其相互關系。(板書課題:倍數和因數)
[評析:課始直接進入主題,揭示本節課新知識研究的方向,使學生產生探究新知的心理需求。]
二、教學倍數和因數的意義
(屏幕出示12個完全相同的正方形)
師:用這12個完全相同的正方形,能拼出一個長方形嗎?(生:能)你能用一道乘法算式,表示你拼出的長方形嗎?
生:我可以拼出一個3x4的長方形。
師:你們猜猜看,這會是一個什么樣的長方形?
生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學生所猜的長方形,并讓學生明白這兩種拼法其實是相同的)
生:我還可以拼出一個2x6的長方形。
生:我還可以拼出一個1x12的長方形。(師問法同上,略)
師:同學們可別小看這三道算式,今天我們學習的內容,就將從研究這三道乘法算式拉開帷幕。
[評折:準確把握學生的學習起點,讓學生根據所列乘法算式猜想可能拼成的長方形,大屏幕隨之展示學生猜想的長方形,更加激起學生的求知欲。]
師:根據3x4=12,我們可以說(屏幕出示):12是3的倍數,12也是4的倍數;3是12的因數,4也是12的因數。
師:同學們一起來讀一讀,感受一下。
師:你讀懂了些什么?(引導學生感知什么是倍數、什么是因數,即倍數和因數的意義;明白在乘法算式中,積就是兩個乘數的倍數,兩個乘數就是積的因數)
師:請你從6x2=12和12x1=12這兩道算式中任選一題,用上面的話說一說。
師(出示18÷3=6):誰是誰的倍數?誰是誰的因數?為什么?
生:因為18/3=6可以改寫成3x6=18,所以18是3和6的倍數,3和6是18的因數。(引導學生明白根據乘除法的互逆關系,在除法算式中也可以說誰是誰的倍數、誰是誰的因數)
屏幕出示:4是因數,24是倍數。
師:這句話對嗎?(讓學生理解倍數和因數是兩個數之間的相互依存關系,必須說誰是誰的倍數、誰是誰的因數)
師:我們再看屏幕上這三道乘法算式(1x12=12、2x6=12、3x4=12),善于觀察的同學一定發現在這三道乘法算式中。我們其實已經找到了12的所有因數,你知道都有哪些嗎?(引導學生說一說)
屏幕出示一組數:36、4、9、0、5、2。
師:請你從這組數中任選兩個數,用倍數和因數的關系來說一說。(生可能會選36和4、36和9、4和2這幾組數)
設疑:
(1)為什么不選0呢?(讓學生理解倍數和因數是針對非零的自然數)(屏幕演示將“0”去掉)
(2)為什么不選5呢?(例如36和5,因為找不到一個自然數和5相乘能得到36,或者36除以5有余數)(屏幕演示將“5”去掉)
(3)去掉了0和5,剩下的這些數和36有什么關系呢?(它們都是36的因數,或36是它們的倍數;當然,36也是36的因數,36也是36的倍數)
[評析:倍數和因數意義的學習層次分明。
(1)猜想:由1-2個完全相同的正方形拼成一個長方形的不同拼法,得出三道乘法算式。根據3x4=12這道算式中三個數的關系,讓學生初次感知倍數和因數的意義。
(2)拓展:根據除法算式中“存在一個自然數等于兩個自然數乘積”這一條件,揭示除法算式中依然存在著倍數和因數的關系,拓展了對倍數與因數意義的理解。
(3)深化:探索并感知倍數和因數的相互依存關系。“從一組數中任選兩個數”說意義的訓練,鞏固與深化了對倍數和因數意義的理解。]
三、探討找一個數的因數的方法
1、師:在剛才這組數(36、4、9、0、5、2)中,2、4、9和36都是36的因數。除了這些,36的因數還有嗎?(生一個一個地舉例)這樣一個一個雜亂無序地找,你們覺得這種方法好嗎?(生:不好!)不好在哪兒呢?
生:容易漏掉或重復。
師:你們有沒有什么好辦法,能一個不落地將36的所有因數都找到呢?同學們可以獨立完成這個任務,也可以同桌的兩位同學合作完成。如果你全部找到了,就請將36的所有因數寫在練習紙上。同時將你找因數的方法寫在橫線的下方。(教師巡視,學生討論交流)
展示學生的作品,學生可能出現的答案有:
(1)根據1x36=36、2x18=36……分別得出1、36、2、18、3、12、4、9、6等數都是36的因數;
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數都是36的因數。
在寫法上,可能出現的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序寫,即1、2、3、4、6、9、12、18、36。然后引導學生比較這兩種寫法的不同。將方法優化:運用除法算式一對一對地找一個數的因數更為簡便,并且不重復、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)
2、探討一個數的因數的特征。
課件出示12的因數、15的因數和36的'因數。(從小到大排列)
學生觀察、討論下面的問題(課件出示問題):一個非零自然數的因數的個數是有限的還是無限的?一個非零自然數的最大因數是幾?一個非零自然數的最小因數是幾?
課件出示描述一個非零自然數的因數的特征的表格(如下),學生討論、交流后再反饋。
師(小結):一個非零自然數的最大因數是它本身,最小因數是1,因數的個數是有限的。
[評析:找一個數的因數是本節課的教學難點。教學中,教師調整教材的編排順序,先學習找一個數的因,數,通過置疑“一個個地找36的因數,這種方法好嗎?不好在哪”,啟發學生根據因數的意義和乘除法的互逆關系,有序地找出36的所有因數,并及時優化方法。同時,引導學生自主探索,在觀察中發現一個數的因數的有關特征,最后進行總結,培養了學生解決問題的能力。]
四、探討找一個數的倍數的方法
1、師:我們已經掌握了如何有序地、完整地找出一個非零自然數的所有因數的方法。如果讓你找出一個數的所有倍數,你會找嗎?(生:會)那么,我們就一起來找找3的倍數。(學生試著找出3的倍數,教師巡視,對有困難的學生給予幫助)
2、師:你是怎樣有序地、完整地找出3的倍數的?
生:用3分別乘1、2、3……得出3的倍數。
生:用3依次地加3得到3的倍數。
師:你認為哪種方法能更迅速地找出3的倍數?(學生討論交流)
師:3的倍數能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數的個數呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)
3、寫出30以內5的倍數。(做在練習紙上)
4、課件出示3的倍數、4的倍數、5的倍數,讓學生從最大倍數、最小倍數、倍數的個數三個方面去描述一個數的倍數的特征(見下表)。
師(小結):一個非零自然數的最小倍數是它本身,沒有最大的倍數,所以倍數的個數是無限的。
[評析:借助學習一個數的因數的方法,以此為基礎,讓學生自主探索找一個數的倍數的方法。在探索交流中,優化尋找一個數的倍數的方法,獲得一個數的倍數的特征。]
五、組織游戲,深化認識
師:這節課,我們通過三道乘法算式與倍數和因數進行了兩次的親密接觸。第一次的接觸,讓我們了解了倍數與因數的意義;第二次的接觸,通過找一個數的倍數和因數,我們了解了一個數的倍數和因數的特征。通過這兩次的親密接觸,相信 同學們對于今天所學的知識,已經有了比較深刻的理解。下面,就讓我們輕松片刻。一起來玩一個特別好玩的游戲,感興趣嗎?
游戲——請到我家來做客
(每位學生的手中,都有一張寫有該名學生的學號卡片)
課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。
(1)屏幕上出現了可愛的小狗向同學們走來(配音):24的因數是我的朋友。如果你卡片上的數是24的因數,歡迎你,我的朋友!(卡片上的數若符合要求,就請這位學生站起來)
(2)屏幕上出現了笨笨的小豬向同學們揮手(配音):我邀請的朋友是5的倍數,喜歡我,就快快來吧!
(3)瞧!可愛的小貓咪也來了。(屏幕上出現了俏皮、可愛的小貓咪)配音:如果你卡片上的數是1的倍數,請來我家做客吧!
(每位學生卡片上的數都符合要求,所以全班學生都站了起來)
師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數,好嗎?(生答略)
師:是不是所有的自然數都可以呢?
生:除了0。
屏幕出示:所有非零自然數都是1的倍數。
(4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數的因數。這個數是幾呢?(生討論交流)
屏幕出示:只有1才符合要求,因為1是所有非零自然數的因數。
六、挑戰自我,拓展升華
師:雖然我們只合作了這短短的三十分鐘,但老師已經深深感到我們這個班的同學非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰性的節目想考考大家,你們敢不敢接受挑戰?(生:敢!)
挑戰——你猜、我猜、大家猜I(屏幕演示動畫標題)
規則:下面每組數,去掉一個數,剩下的數便是其中一個數的倍數或因數。你能找出這個數嗎?
(1)20、5、4、3。
答案:去掉3(屏幕演示隱去“3”),剩下的數是20的因數,或20是它們的倍數。
(2)4、12、18、3。
答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數便是12的因數,或12是它們的倍數;二是去掉4(屏幕演示隱去“4”),剩下的數便是3的倍數。
[評析:設計游戲環節,對整節課的知識點進行總結深化,并引導每位學生參與其中,積極主動地思考本節課所學的知識,教學過程真實、有效。]
七、全課總結
師:通過今天這節課的學習,你有什么收獲?你們學得開心嗎?玩得開心嗎?其實。數學就是這么簡單而有趣,讓我們每天都樂在其中!
總評:
本節課的教學特色是嚴謹靈活、細膩奔放。在“因數和倍數”概念的學習過程中,重視師生情感的交流,注重每個學生的發展,較好地體現了“教師有效引導下學生自主探索”這一教學策略。
1、意義教學引導學生自主構建。
在多次的實踐教學中,發現用12個完全相同的小正方形拼出一個長方形。對于四年級的學生來說非常容易。教材這樣安排的目的,在于幫助學生有意識地感受1和12、2和5、3和4這幾組數之間的有機聯系。
本課中,倍數和因數的意義教學分三個層次:
1、借助三個問題讓學生通過想像及大屏幕的直觀演示,引導學生得出三道乘法算式,同時介紹倍數和因數的含義。
2、通過除法算式找因倍關系。
3、滲透倍數和因數的相互依存性。
2、合理組織教材,將找一個數的因數及其特征教學提前。
尋找一個數的因數是本節課的教學難點,學生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。
教學中,教師出示一組數,如36、4、9、0、5、2,讓學生從這組數中任選兩個數,用倍數和因數的關系來說一說。
最后設疑:
(1)為什么不選O呢?(讓學生理解倍數和因數是針對非零的自然數)
(2)為什么不選5呢?(如36和5,因為找不到一個自然數和5相乘能得到36,或者36除以5有余數)
(3)去掉了0和5,剩下的這些數和36有什么關系呢?(它們都是36的因數,或36是它們的倍數)
這樣的改變,既達到預定目的,又為學習找因數做了鋪墊,引發了學生尋找36的因數的濃厚興趣。在引導學生自主探索一個數的因數的特征時,教師讓學生帶著問題去觀察討論:每一個非零自然數的因數的個數是有限的還是無限的?一個非零自然數的最大因數是幾?一個非零自然數的最小因數是幾?以上安排,降低了學生的學習難度。
3 尋找一個數的因數和倍數的方法讓學生自己生成。
在尋找一個數的因數和倍數的過程中。教師將學生推向發現與探索的前臺。
尋找一個數的倍數和因數。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導學生進行溝通,尋找它們的共同點和聯系,進而比較各種方法之間的優劣,遴選最優方法,提升思維效率。
4 增強游戲中數學思維的含量。
知識在游戲中深化,在挑戰中升華。
本節課以“有效引導下自主探索”為教學策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學,將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發現、共同分享,引領學生經歷“研究與發現”的真實過程。課尾游戲的運用,激發了學生的學習熱情,讓學生以愉快的心情和良好的體驗融入學習活動中,培養了學生用數學眼光看待游戲的意識,大大降低了學生對數學概念學習的枯燥體驗。
《因數和倍數》說課稿 11
教學目標:
1、使學生初步理解倍數和因數的含義,知道倍數和因數相互依存的關系。
2、使學生依據倍數和因數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數倍數和因數的方法,能在1—100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。
3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
教學重點:
理解因數和倍數的含義,知道它們的關系是相互依存的。
教學難點:
探索并掌握找一個數的因數的方法。
教學準備:
12個小正方形片、每個學生的學號紙。
教學過程設計:
一、認識倍數、因數的含義
1、操作活動。
(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
(2)整理、交流,分別板書4x3=1212x1=126x2=12
2、通過剛才的學習,我們發現用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4x3=12可以說12是4的倍數,12也是3的倍數;反過來,4和3都是12的因數。
3、今天我們就來研究倍數和因數的知識。
(揭示課題:倍數和因數)
(1)那其它兩道算式,你能說出誰是誰的倍數嗎?你能說出誰是誰的因數嗎?
指名回答后,教師追問:如果說12是倍數,2是因數,是否可以?為什么?
小結:倍數和因數是指兩個數之間的關系,他們是相互依存的。
(2)出示:20x3=60,36÷4=9。同桌相互說一說誰是誰的倍數?誰是誰的因數?
指出:為了方便,我們在研究倍數和因數時,所說的數都是指不是0的自然數。
二、探索找一個數倍數的方法。
1、從4x3=12中,知道12是3的倍數。3的倍數還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
2、提問:什么樣的數是3的倍數?你能按從小到大的順序有條理的說出3的倍數嗎?能全部說完嗎?可以怎么表示?
3、議一議:你發現找3的倍數有什么小竅門?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數。
4、試一試:你能用學會的竅門很快地寫出2和5的倍數嗎?
生獨立完成,集體交流。注意用……表示結果。
5、觀察上面的3個例子,你發現一個數的倍數有什么特點?
根據學生的交流歸納:一個數的倍數中,最小的是它本身,沒有最大的倍數,一個數倍數的個數是無限的。
6、做“想想做做”第2題。
學生填表后討論:表中的應付元數是怎么算的?有什么共同特點?你還能說出4的哪些倍數?說的完嗎?
二、探索求一個數因數的方法。
1、學會了找一個數倍數的方法,再來研究求一個數的因數。
你能找出36的所有因數嗎?
2、小組合作,把36的所有因數一個不漏的寫出來,看看哪個組挑戰成功。并盡可能把找的方法寫出來。教師巡視,發現不同的找法。
3、出示一份作業:對照自己找出的36的因數,你想對他說點什么?
4、交流整理找36因數的方法,明確:哪兩個數相乘的'積等于36,那么這兩個數就是36的因數。(一對一對地找,又要按次序排列)
板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
5、試一試:請你用有序的思考找一找15和16的因數。
指名寫在黑板上。
6、觀察發現一個數的因數的特點。
一個數的因數最小是1,最大是它本身,一個數因數的個數是有限的。
7、“想想做做”第3題。
生獨立填寫,交流。觀察表格,表中的排數和每排人數與24有怎樣的關系。
四、課堂總結:學到這兒,你有哪些收獲?
五、游戲:“看誰反應快”。
規則:學號符合下面要求的請站起來,并舉起學號紙。
(1、)學號是5的倍數的。
(2、)誰的學號是24的因數。
(3、)學號是30的因數。
(4、)誰的學號是1的倍數。
思考:
1、倍數和因數是一個比較抽象的知識,教學中讓學生擺出圖形,通過乘法算式來認識倍數和因數。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現積是12的不同的乘法算式。即:4x3=122x6=121x12=12。根據乘法算式,從學生已有知識出發,學習倍數和因數,初步體會其意義
2、在得出這些乘法算式以后,先根據4x3=12說明12是3和4的倍數,3和4都是12的因數,使學生初步體會倍數和因數的含義。在學生初
步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環節中,我設計了一個練習。即“根據下面的算式,同桌互相說說誰是誰的倍數,誰是誰的因數”第一個是20x3=60,根據學生回答后質疑“能不能說3是因數,60是倍數”,從而強調倍數和因數是相互依存的。第二個是36÷4=9,讓學生根據除法算式說出誰是誰的因數,誰是誰的倍數,并追問:你是怎么想的?使學生知道把它轉化為乘法算式去說。
在學生有了倍數、因數的初步感受后,再向學生說明:我們在研究倍數和因數時,所說的數一般指不是0的自然數,明確了因數和倍數的研究范圍。
3、P71例一:找3的倍數,先讓學生獨立思考,“你還能再寫出幾個3的倍數?你是怎樣想的?”在學生交流的基礎上,適時提出:什么樣的數就是3的倍數?你能按照從小到大的順序有條理地說出3的倍數嗎?使學生明確:找3的倍數時,可以按從到大的順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數。在此基礎上,引導學生進一步思考:你能把3的倍數全都說完嗎?從而使學生學會規范地表示一個數的所有倍數,并初步體會到一個數的個數是無限的。隨后,讓學生試著找出2和5的倍數,并正確表達2和5的所有倍數。最后引導學生觀察寫出的3、2和5的所有倍數,發現一個數的倍數的特點,即:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。
4、例二:找36的所有因數,準備讓學生獨立嘗試,但這部分內容對學生來說是個難點,所以我采用了四人小組合作的方式讓學生試著找出36的所有因數。在找36的因數時,無論想乘法算式還是想除法算式,學生一般都從無序到有序,從有重復或遺漏到不重復不遺漏。所以,我在教學時允許他們經歷這樣的過程。先按自己的思路、用自己的方法寫36的因數,能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結合例題和試一試,通過比較和歸納,使學生明確:一個數的因數的個數是有限的,一個數的因數中最小的是1,最大的是它本身。
5、教材P72第2題讓學生解決實際問題在表里填數,把4依次乘1、2、3、……得出“應付元數”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數,進一步理解找倍數的方法。第3題也是解決實際問題填寫表里的數,并提出問題讓學生思考,使學生明確兩個相乘的數都是它們積的因數,求一個數的所有因數,可以想乘法一對一對地找出來,理解找一個數的因數的方法。
為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數倍數或因數的方法。
《因數和倍數》說課稿 12
教學內容:
蘇教版小學數學四年級(下冊)第70-72頁。
教學目標:
1、使學生結合乘、除法運算初步認識倍數和因數的含義,探索求一個數的倍數和因數的方法。
2、使學生在探索的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。
3、增強學生學習數學的興趣,感受到成功的快樂。
教學重點:
理解倍數和因數的含義,探索并掌握找一個數的倍數和因數的方法。
教學難點:
理解倍數和因數的含義及倍數和因數的相互依存關系。
教學準備:
學生:每人準備12個同樣大小的正方形。教師:課件
教學過程:
一、認識倍數和因數
1、提出活動要求:每一桌的同學合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來。看看哪桌的同學最快完成。
2分組操作活動,師巡視指導。
3、指名匯報,出示課件,全班交流。匯報時是引導學生根據“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。
4、教學“倍數”和“因數”的概念。
(1)結合4x3=12,說明12是4的倍數,12也是3的倍數,4和3都是12的因數。并板書。
(2)齊讀這三句話,板書課題:倍數和因數
(3)指名看式子說。
(4)請學生根據6x2=12和12x1=12兩道算式,照樣子說
一說哪個數是哪個數的倍數?哪個數是哪個數的因數?
追問:如果說12是倍數,3是因數,可以嗎?為什么?
明確:倍數和因數都是指兩個數之間的關系,是相互依存的。
教師指出閱讀底注明確:為了方便,我們在研究倍數和因數時,所說的數一般指不是0的自然數。不是0的自然數,0要考慮嗎?那從什么數開始。如1、2、3、4、5、6、7、8、9…….在小數和分數等其他數中就也沒有倍數和因數的說法了。(可根據具體的算式說明,如0x3=0,1.5x2=3。)
(5)練習:“想想做做”第1題。每位同學都各選一個乘法算式同桌之間互相說一說,
三、探索找倍數和因數的方法
1、探索找一個數的倍數的方法
(1)提出問題:什么樣的數會是3的倍數呢?明確:3的倍數是3與一個數相乘的積。你能找到多少個3的倍數?先讓學生獨立思考,再組織交流。
(2)啟發:誰能按從小到大的`順序有條理的說出3的倍數?根據什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數。同時板書:
3x1=(3)3x2=(6)……
追問:能把3的倍數全部說完嗎?應該怎樣表示3的倍數有哪些呢?
根據學生的回答課件演示:3的倍數有3、6、9、12、15……
(3)完成后面的試一試。提醒學生注意有序的思考,并規范的表示出結果。
(4)一個數的倍數的特點。
提問:觀察上面的幾個例子,你發現一個數的倍數有什么特點?根據學生的交流歸納:一個數的倍數中,最小的是它的本身,沒有最大的倍數,一個數的倍數的個數是無限的。
提問:現在你能很快說出6的最小倍數是多少嗎?10呢?
2、探索找一個數的因數的方法
(1)提出問題:什么樣的數是36的因數?
學生舉例說明。明確:如果有兩個數相乘的積是36,那么這兩個數都是36的因數。
板書()x()=36
(2)提問:你能找出36的所有因數嗎?啟發:要做到不重復,不遺漏,怎樣才能有條理地找出36的所有因數?
學生試著在練習本上列式找出。
(3)學生匯報交流,根據學生的回答課件演示。
(4)進一步啟發:我們知道除法是乘法的逆運算,根據除法算式,也可以找一個數的因數。根據36÷1=36可以找到1和36……
請同學們看書71頁,完成書上的填空。
(5)完成“試一試”。提醒學生有序的思考,做到不重復,不遺漏。
學生匯報,說說你是怎樣找的。
(6)觀察發現
提問:觀察上面的例子,你發現一個數的因數有什么特點?
小結:一個數因數的個數是有限的,一個數的因數中,最小的是1,最大的是它本身。
提問:現在你能很快說出18的最小因數和最大因數是多少嗎?25呢?
四、鞏固練習
1、“想想做做”第2題。
組織學生讀題,理解題意。表中每欄的應付元數各是怎樣算出來的?他們都是4的什么數?你還能說出4的哪些倍數?能把4的倍數全部說完嗎?
2、“想想做做”第3題。
組織學生讀題,理解題意。表中每欄的每排人數是各怎樣算出來的?排數和每排人數都是24的什么數?
五、全課總結
這節課你學會了什么?
《因數和倍數》說課稿 13
設計說明
1.動手操作,激發學生的學習興趣。
由于數學知識比較抽象,學生不易理解,缺乏興趣,而興趣是學生獲取知識,提高學習質量的動力。對于小學生來說,動手操作是激發學生興趣切實可行的好方法,新課伊始,利用數字卡片組除法算式引入,不僅可以激發學生的學習興趣,同時還能使學生初步感知算式中各數的關系是相互的,為學生探究新知奠定基礎。
2.合作學習,培養合作意識,形成自學能力。
數學教學要緊密聯系學生的生活,創設有助于學生自主學習、合作交流的情境。教學中結合除法算式設計小組同學自學倍數與因數的概念的活動,并通過知識的遷移,要求學生利用18的乘法算式說說誰是18的因數。這樣學生在閱讀、質疑、交流中,逐步形成自學能力,體驗自主學習的快樂。
課前準備
教師準備PPT課件
學生準備數字卡片
教學過程
活動導入
1.用下面的數字卡片組除法算式。(生認真觀察并列出算式)
2.導入:可別小看這些除法算式,今天我們要研究的因數和倍數就在這里。
設計意圖:通過組除法算式,為學生自主建構概念提供準備,同時溝通與新知識的聯系。把學生引入新內容的情境,并讓學生明確本節課的學習目標。
自學因數和倍數的概念
1.學生獨立把上面的算式分類,并閱讀教材5頁的內容,自學因數和倍數的概念。
2.通過討論明確:
(1)為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括0)。
(2)在這節課我們所說的因數不是以前乘法算式中的因數,二者不能混淆。
3.匯報:
(1)看黑板上的算式,說說誰是誰的`因數,誰是誰的倍數。
(2)出示算式c÷a=b,(a,b,c都是不為0的自然數)讓學生說說在這個算式中誰是誰的因數,誰是誰的倍數。
4.強調:因數和倍數是相互依存的。闡述因數和倍數時,一定要說清楚誰是誰的因數,誰是誰的倍數。
探究找一個數的因數和倍數的方法
一、探究找一個數的因數的方法。
1.出示教材6頁例2:18的因數有哪幾個?
(1)提問:怎樣去找18的因數呢?(同桌互相討論,然后匯報)
(2)匯報:第一種方法,列出積是18的乘法算式,得到18的因數有1,2,3,6,9,18;第二種方法,列出被除數是18的除法算式,得到18的因數有1,2,3,6,9,18。
(3)討論:無論是乘法算式還是除法算式,在思考時都要注意什么?(要從最小的數找起,都是非0的自然數)
(4)書寫:在書寫一個數的因數時要注意什么?(要注意一頭一尾地成對寫因數,這樣做不容易漏寫)
(5)介紹集合圖:18的因數也可以像這樣表示,如圖:18的因數
我們稱它為集合圖,這就是用集合圖表示因數的方法。
2.練習。
教材7頁2題(1)。
《因數和倍數》說課稿 14
一、教材分析:
教材充分利用學生已有的知識,引出倍數和因數的概念,探索找一個數的倍數和因數的方法。
二、學情分析:
“倍數和因數”建立在學生已經掌握了許多自然數的知識之后,五年級數學水平比較好,在教學中我爭取充分調動學生主觀能動性,鼓勵自主探索。
三、教學目標:
(一)知識、技能目標:
1、使學生結合整數乘、除法運算初步認識倍數和因數的含義,探索并掌握找一個數的倍
數和因數的方法,發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。使學生在認識倍數和因數以及探索一個數的倍數或者因數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。
(二)情感、價值目標:
讓學生初步意識到可以從一個新的角度來研究非零自然數的特征及其相互關系,培養本
課的教學重點是理解倍數和因數的含義與方法。
教學難點是掌握找一個數的倍數和因數的方法。
四、說教法與學法指導
1、遵循學生主體、教師主導(組織),學生操作、探究為主線的理念,首先從學生的操
作入手,由淺入深,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,在操作中引出倍數和因數的概念。
2、小組合作討論法。以學生討論、交流、相互評價,促成學生對找一個數的倍數、一個
數的因數的方法進行優化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。
五、教學準備
多媒體課件、多個同樣大小的長方形紙片
六、說教學過程
(一)《數學課程標準》指出數學教學要緊密聯系學生的生活實際,要從學生的生活經驗和已有的知識點出發,上課開始,就讓學生利用已學過的知識進行討論,
合作交流,認識倍數和因數
1、動手操作。
出示操作要求:用12個同樣大的正方形拼成一個長方形,有幾種不同的拼法?觀察拼
成的長方形,每排擺了幾個?擺了幾排?用乘法算式把各種擺法表示出來。
2、提問:你表示的乘法算式是怎樣的?猜猜他可能是怎么擺的?
根據學生回答,在黑板上板書出乘法算式,電腦演示相應的圖形。
板書:12x1=12 6x2=12 4x3=12
3、談話:用12個同樣的小正方形可以擺出三種不同的長方形,寫出三道不同的乘法算
式。根據一道乘法算式,如4x3=12,我們可以說
“12是4的.倍數,12也是3的倍數。
3是12的因數,4也是12的因數。”(邊說邊在屏幕上顯示)
師:如果我說“4是因數,12是倍數,行嗎?”
明確:倍數和因數表示的是兩個數之間的關系,所以不能單說誰是倍數,誰是因數。
根據6x2=12,你能說出哪個數是哪個數的倍數,哪個數是哪個數的因數嗎?根據
12x1=12呢?
4、這就是我們今天要研究的“因數和倍數”。為了研究方便,通常在研究因數和倍數時,
所說的數都是指不為零的自然數。
七、合作交流,探索找一個數的因數的方法
1、談話:下面我們研究找一個數的因數。
你能想辦法找出18的所有因數嗎?有困難的也可以小組里先商量一下。
教師巡視,有目的地將學生中出現的各種情況指名板演。
2、比較“有序”和“無序”兩種情況,引導:對他的方法有沒有什么需要補充或提問
的?(使學生在比較、交流中感悟有序思考的必要性和科學性。)
3、比較“乘法找”和“除法找”的兩種方法,你發現了什么?
4、回顧剛才的交流,你覺得要找出一個自然數的所有因數,最大的訣竅是什么?(按一定的順序一對一對地找,找到兩個數接近為止。)
5、能找出15的因數或16的因數嗎?選擇一個找找看。交流:15的因數有1、3、5、15。16的因數有1、2、4、8、16。
6、觀察上面三個例子,你發現了什么?
八、自主探索
學會找一個數的倍數。
1、談話:剛才我們認識了倍數和因數,知道了12是3的倍數,3的倍數還有哪些?
讓學生思考片刻后自己試著找一找,再小組交流。
全班匯報:在引導學生相互評價的基礎上明確:3與一個數相乘的積就是3的倍數,所以可以用3依次乘1、2、3、4、5……來找3的
倍數;也可以每次加3來找3的倍數。
提問:寫的完嗎?(寫不完)那怎么辦?(用省略號表示)
2、能總結一下找一個數的倍數的方法嗎?
3、教師出示表格讓學生找出4的倍數:指名匯報,教師板書:
4、觀察上面的例子,你有什么發現?先小組討論,再交流。
九、聯系生活,鞏固應用。
教師出示練習,鞏固本課所學的知識。
十、課堂總結,拓展延伸。
讓學生暢談本節課的收獲。
《因數和倍數》說課稿 15
教學目標:
知識與技能、過程與方法:
1、從操作活動中理解因數和倍數的好處,會決定一個數是不是另一個數的因數或倍數。
情感態度與價值觀:
2、培養學生抽象、概括的潛力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
3、培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
教學重、難點:
1、理解因數和倍數的含義。
2、學會求一個數的因數或倍數的方法。
教學準備:
課件
教學過程設計:
一、創設情境,引入新課
師:人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是?
生:父子(父母、母子、母女)關系。
師:我和你們的關系是?
生:師生關系。
師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節課,我們一齊探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)
二、探究新知
(一)學習因數和倍數的概念
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為26=12
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
4、師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
(二)、學習求一個的因數或倍數的方法。
A、找因數:
1、出示例1:18的因數有哪幾個?
從12的因數能夠看得出,一個數的因數還不止一個,那我們一齊找找看18的因數有哪些?
學生嘗試完成:匯報
(18的因數有:1,2,3,6,9,18)
師:說說看你是怎樣找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36
師:你是怎樣找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫能夠嗎?為什么?(不能夠,因為重復的因數只要寫一個就能夠了,所以不需要寫兩個6)
仔細看看,36的因數中,最小的是幾,最大的是幾?
看來,任何一個數的因數,最小的必須是(),而最大的必須是()。
3、你還想找哪個數的因數?(18、5、42)請你選取其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還能夠用集合表示。
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一向找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
B、找倍數:
1、我們一齊找到了18的因數,那2的倍數你能找出來嗎? 匯報:2、4、6、8、10、16、
師:為什么找不完
你是怎樣找到這些倍數的(生:只要用2去乘1、乘2、乘3、乘4、)那么2的倍數最小是幾最大的你能找到嗎
2、讓學生完成做一做1、2小題:找3和5的倍數。
匯報3的'倍數有:3,6,9,12
改寫成:3的倍數有:3,6,9,12,你是怎樣找的?(用3分別乘以1,2,3,倍)
5的倍數有:5,10,15,20,師:表示一個數的倍數狀況,除了用這種文字敘述的方法外,還能夠用集合來表示
2的倍數3的倍數5的倍數
師:我們明白一個數的因數的個數是有限的,那么一個數的倍數個數是怎樣樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)
三、課堂小結
我們一齊來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
板書設計:
因數與倍數
因數與倍數指的是數與數之間的關系。
一個數因數的個數是有限的,最小的因數是1最大的因數是它本身。
一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
教學反思:
教材上,探究因數這部分的例題比較少,只有一個:找18的因數。根據學生的實際狀況,我進行了重組教材,先讓學生根據乘法算式一對對地找出15的因數,在此基礎上再讓學生探究18的因數。透過質疑:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發現:按照必須的順序一對對的找因數,能既找全又不遺漏。進而又借助體態語言打手勢,讓學生說出30和36的因數,到達了鞏固練習的目的。又明確了像36當兩個因數相等時,只寫其中的一個6。這樣設計由易到難,由淺入深,貼合了學生的認知規律。
《因數和倍數》說課稿 16
教學內容:
《因數與倍數認識》第5頁。
教學過程:
一、創設情境,引入新課
1、互為關系的辨析(以人與人之間的關系,如你和爸爸、媽媽的關系,你和老師之間的關系,存在這些關系的雙方互相的關系表示為例,辨析互為關系)
2、小結互為關系,引入課題。(板書課題:因數與倍數)
二、探究新知
(一)認識因數與倍數
1、回顧學過學過的幾類數(自然數,小數,分數)
2、揭示因數與倍數的研究范圍,(現在我們來研究自然數中數與數之間的關系。)
3、整除算式的辨別(給下面算式分類,并描述算式的特征)(出示課本P5例1)
4、學生自我分類,小組討論分類結果,完善分類。
5、辨析整除的意義,自學了解因數、倍數的意義,組內交流自學成果,議一議,辨明因數與倍數。
6、全班交流,選擇分類后的算式,說說什么是因數和倍數?說說誰是誰的因數,誰是誰的倍數。
7、當堂訓練
(1)完成課本P5下面的“做一做”(獨立說、組內互相說、全班交流說)
(2)判斷:課本P7 T5(1)
(二)因數和倍數的求法
1、自學課本P6例2和例3,初步了解因數與倍數的'求法。
2、組內討論因數與倍數的求法,一個數的因數與倍數的個數、一個數的最小的因數和最大的因數、一個數最小的倍數和最大的倍數。
3、全班交流上面組內交流的知識點,適時輔導,各自完善。
4、當堂訓練
(1)完成練習二T1(獨立練習、組內交流完善、選擇性全班交流)
(2)完成練習二T5(獨立判斷、組內交流完善、全班交流)
三、總結與分享
與老師和同學分享你的收獲與感悟。
《因數和倍數》說課稿 17
教學目標:
1、理解倍數和因數之間的關系是相互依存的。
2、根據具體的問題情景,能正確確定某個非零自然數的所有因數。
3、使學生體味數學的趣味性,激發學生對數學的探究熱情。
教學重點:
理解倍數和因數之間的關系是相互依存的,能正確求一個數的倍數和因數。
教學難點:
能正確有序求一個數的倍數和因數。
教學過程:
一、遷移引入
師:同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟??。其實在我們的數學王國里,數與數之間也存在著這種相互依存的關系,請看大屏幕,認識這些數嗎?(課件出示:0,1,2,3,4,5)
生:自然數。
(課件去“0”)
師:去0后這又是些什么數?(非零自然數中。)這節課我們就在非零自然數中來研究數與數之間的這種相互依存的關系,
板書:因數和倍數
(研究范圍:非零自然數中)
二、探究新知
(一)找一個數的因數
1、(課件出示例1情境圖)
師:請看大屏幕,這是36人列隊操練,每排人數要一樣多,可以怎樣排列?同學們可以先同桌討論,作好記錄,再匯報。(引導生說:可以站幾排,每排站幾個。)
根據這些信息我們能列出哪些乘法算是呢?
板書:1×36=362×18=363×12=364×9=366×6=361
師:在4×9=36這個算式中,4和9叫什么?(因數)36是?(積),這是我們以前學的乘法各部分名稱。其實,在整數乘法中,因數和積之間還存在一種相互依存的關系,也就是說4是36的因數,36是4的倍數。,同樣,在這個算式中,我們還可以說9是36的?(因數),36是9的?(倍數)。
2、誰能像老師這樣,說一說3×12=36他們之間的關系。(先請一個學生站起來說一說)
3、下面請同桌像剛才一樣互相說一說另外三個算式中(1×36=36 2×18=36 6×6=36)誰是誰的倍數,誰是誰的因數,開始。(師巡視,指導差生)然后指名說一說
4、你能根據左邊的乘法算式寫出相應的除法算式嗎?(師根據生的回答板書)
我們現在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數,誰是誰的因數?(說好后再讓學生逐個說出除法算式中的關系)
5、剛才同學們都說4是36的因數,那能單獨說4是因數嗎?(生發表意見)
到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數還是因數?(課件著重強調數字“4”)
引導學生說:第一個式子中,4是36的因數,第二個式子中4是2的`倍數。(課件出示結果)
師:從剛才的回答中你明白了什么?(引導生知道:因數和倍數是相互依存的,不能單獨存在)
6、師:下面,請同學們看這個式子,說一說誰是誰的倍數,誰是誰的因數。(課件出示:4×5=2014÷3=53+6=96-4=20.3×2=0.6)
生回答后,引導生知道:通過后三個算式使生進一步理解,倍數和因數都是建立在乘法或除法的基礎之上的,他們的研究范圍在非零自然數中。
7、你能根據上面所寫的乘法算式或除法算式說出36的所有因數嗎?
師;那么你知道怎樣找一個數的所有因數呢?(同桌商討后,指名回答,課件出示。)
找一個數的所有因數時,可以先寫出用這個數作積的所有乘法算式,或者寫出用這個數作被除數的所有除法算式,再寫出它的所有因數。注意,最好按照順序從小到大來寫,這樣不容易遺漏。
8、師:現在,我們來練習一下。同學們分組有序的找出15、16、24、25的所有因數嗎?打開練習本,快速的寫出來,開始。(師巡視指導困難學生)
寫完后生匯報,并說出你是怎樣找出它們的因數的,課件出示
9、引導歸納概括一個數的因數的特點
師:看來同學們已經充分掌握了找一個數因數的方法,觀察剛才我們找的這些數的因數,你有什么發現嗎?(出示合作學習要求和目的)下面請小組合作,仔細觀察、比較我們找出的這些數的因數,你從這幾個例子中發現了什么?請把你的發現和小組的成員說一說,注意:當一個同學在說的時候,其他成員一定要認真聽,不要打斷別人的發言,開始。
引導學生發現:一個非0自然數,最小的因數是1,最大的因數是它本身。一個數的因數個數是有限的
(二)找一個數的倍數
1、師:找了這么多數的因數,現在我們來找一個數的倍數,好不好?
(課件出示例2)
生寫,師巡視。
2、指明匯報后,并說出你是如何找一個數的倍數的?
3、師:同學們,看來一個數的倍數真的是找不完啊,誰能說一說如何找一個數的倍數?
歸納(出示找一個數的倍數的方法):找一個數的倍數從它本身開始,用非零自然數1,2,3···去乘,就可以得到。
那請大家觀察這些數的倍數,你又能發現什么呢?同桌兩個先互相說一說,開始吧。
生發言。
4、引導學生發現:一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。(課件出示)
三、回歸課本
師;同學們認識了倍數和因數,探索了因數和倍數的特點,并且能正確求一個數因數和倍數的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。
四、學以致用(課件出示)
剛才我們在數學王國里學習了這么多有趣的數學知識,現在一起來挑戰幾道題,看看你們是否真正的掌握了,好不好?
五、小結:這節課同學們通過自己的努力又發現了數學海洋里的新知識,真讓老師感到開心,在我們今后的學習中希望大家繼續帶著這些熱情和精神去探索、去發現。
六、作業:書本127頁練習二十1、2、3題(課件出示)
板書設計:
因數和倍數
(非零自然數中)
1×36=36 36÷1=36 36÷36=1
2×18=36 36÷2=18 36÷18=2
3×12=36 36÷3=12 36÷12=3
4×9=36 36÷4=9 36÷9=4
6×6=36 36÷6=6
36的因數有:1、2、3、4、6、9、12、18、36.
《因數和倍數》說課稿 18
教學目標:
1、學生掌握找一個數的因數,倍數的方法;
2、學生能了解一個數的因數是有限的,倍數是無限的;
3、能熟練地找一個數的因數和倍數;
4、培養學生的觀察能力。
教學重點:
掌握找一個數的因數和倍數的方法。
教學難點:
能熟練地找一個數的因數和倍數。
教學過程:
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為26=12
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數 倍數)
齊讀p12的注意。
二、新授
(一)找因數
1、出示例1:18的因數有哪幾個?
從12的因數可以看得出,一個數的因數還不止一個,那我們一起找找看18的因數有哪些?
學生嘗試完成:匯報
(18的因數有: 1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)
師:18的因數中,最小的.是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有: 1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
仔細看看,36的因數中,最小的是幾,最大的是幾?
看來,任何一個數的因數,最小的一定是( ),而最大的一定是( )。
【《因數和倍數》說課稿】相關文章:
《倍數和因數》數學說課稿02-17
《因數和倍數》說課稿(通用14篇)07-07
因數和倍數說課稿(通用9篇)04-04
《倍數和因數》教案03-18
數學《因數與倍數》復習說課稿06-07
《因數和倍數》教學反思01-31
倍數和因數的教學反思03-06
因數和倍數教學反思10-26
因數和倍數教學反思07-02