初中數學教案

時間:2024-04-22 14:22:09 數學教案 我要投稿

初中數學教案

  作為一名為他人授業解惑的教育工作者,就有可能用到教案,編寫教案有利于我們科學、合理地支配課堂時間。教案要怎么寫呢?下面是小編收集整理的初中數學教案,歡迎大家分享。

初中數學教案

初中數學教案1

  圖樣,圖樣,還是圖樣。到處都是圖樣,有的用尖細的木片潦草地寫在滿是灰塵的大理石桌上,有的用一塊木炭涂在墻上,有的用粉筆畫在地上。阿基米德穿著一件白色的舊長袍,坐在桌子上思索起來。手指象發燒似的微微顫抖。豆大的汗珠裹著灰塵,從他極度疲倦的臉上落在手上,落到衣服上,落到隨手扔在桌子上的一卷草片紙上。

  他沒有跑,沒有象一個無恥的膽小鬼那樣從戰場上逃跑。他竭盡全力,把全部的智慧和熱情都獻給了這座城市。多少個不眠之夜,多少個酷熱難耐的白天,他就是整個敘拉古防御陣地的大腦和心臟。一提到他的名字,羅馬人就驚恐地逃離城墻,他們唯恐躲避不及致命的投石炮,以及紛紛落下的熾熱的涂滿油脂的麻屑,標槍與長矛的驟雨。不就是他,不動咫尺就把接近城市海防工事的羅馬艦隊都燒毀了嗎?不就是他,一個人用他發明的一組復雜的滑車把羅馬的兵船吊在半空,再從高處把船拋向深海里去了嗎?但這對于一個人的獨創才能和精力來說,已經是極限了,他已經是一個衰弱的老人,他的手握不住戰劍。他堅持留在陣地上,直至敵人出現在城墻外邊。而這時戴著盔形帽的羅馬人已經開始在被歲月磨出來的馬路的石塊上晃動。希臘人竭盡最后的力量進行抵抗,肉搏戰當然沒有阿基米德參加的份。。。。。。

  在中午被烈日曬的發燙的物體,現在讓令人愜意的涼爽的空氣溫柔地籠罩著。戰斗的喊聲透過厚實的門簾隱隱約約地傳進屋里。掛在兩個窗戶上的草簾子使得屋里稍微有點昏暗,但一點也不妨礙看清楚眼睛看慣的東西。 生命就要完結,這一生是漫長而又艱難的。在命運給予他的七十五年里,在不停的探索中,在持續的緊張中,在旅行中,在工作室,造船廠和采石場的不斷的爭論中,他從未能回顧過自己的人生,沒有考慮一下是否活得合理。伊壁鳩魯(前341—前270 古希臘唯物主義哲學家,在倫理觀上,主張人生的目的在于避免苦痛,使心身安寧,怡然自得,這才是人生最高的幸福)這位激進的老人如此忘情地說過的那種快樂,哪怕是一部分,阿基米德也沒有從生活中得到過。在他還是一個十七歲的青年人時,曾經站在這位偉大哲學家的墳墓上,思索著用自己的一生實現他富有人生樂趣的哲學。他實現了嗎?

  還在青年時代,他就踏上了這條荊棘叢生的,曲折的,布滿無數坎坷的學者道路。學者的生活。。。。。。當生活道路開始的時候,他曾經把生活想象的很不實際。他用充滿甜蜜的幸福,普遍的崇敬和持久不變的,任憑什么也不能蒙蔽的榮譽來描繪自己青年時代雄心勃勃的夢想。但生活并非如此,他竟然是格外地嚴酷。他實際體驗到,這生活是一天一時也不停地,終身為一個神靈,一個偶像,一個各種思想和愿望的主宰服務。科學就是一個催眠術家,只要一次受到科學真理魔術般的誘惑,立刻就會為了科學而忘掉一切,直至最后進入墳墓。

  榮譽是有的,但是這榮譽足以為不學無術者和嫉妒者們的大聲嘲笑所敗壞。是有許多狂熱的崇拜者,但也有許多惡毒的非難者,他們不錯過任何一個機會,通過假借的名義,公開和秘密地對他進行侮辱,詆毀和誹傍,以他為笑柄。。。。。。

  他本人的生活是這樣,他父親的生活也是這樣。他父親叫做菲迪亞斯。供人參閱的備忘錄描述了他很早的童年時代的情形,小阿基米德似乎不得不讓每一個新認識的人相信,他的父親只是和奧利匹亞的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文學家的父親早生一百多年的雕刻家菲迪亞斯同姓。奇怪的是,菲迪亞斯竟然不是國王亥厄洛的親戚,相反,完全出乎意料之外,阿基米德卻是國王亥厄洛的一個親戚,就是說,也是國王兒子格隆的一個親戚。。。。。。

  這里是繁華的亞歷山大城。阿基米德花了許多時間沿著城市的石頭道散步,登上佛洛斯燈塔,從那里了望擁簇著似乎是從地球上所有有人居住的地方抵達到這里的希臘,羅馬,腓尼基,波斯和其它國家的船只的港灣。但是,比這多得多的時間,他是在著名的亞歷山大圖書館里度過的。世界上任何一個圖書館可能都要羨慕這家圖書館所收集的抄本和手稿。在圖書館里,集中了偉大的亞歷山大城所有最優秀的青年人。在和那些崇拜本國著名的歐幾里德的年輕人的熱烈爭論中,阿基米德對自己的科學立場的理解逐漸成熟,有些地方與亞歷山大人接近,有些地方則與他們截然不同。但是,盡管在觀點上有所不同,他剛一熟悉歐幾里德的著作,對已故的偉大學者歐幾里德的虔誠的敬意就完全征服了阿基米德。歐幾里德的<<幾何原本>>從此成為他整個漫長一生的'必讀之書。。。。。。

  戰斗的吶喊聲越來越大。厚實的窗簾已經擋不住獲勝的羅馬人狂喜的歡呼聲,戰劍打擊敘拉古最后一批保衛者的盾牌的叮當聲,還有那刺向他們被長時間的防御戰折磨得精疲力盡的身體的沉悶聲。獲勝的敵人已經占領了這座苦難的城市,又醉心于卑鄙無恥的,令人痛惡的殺掠,連兒童,婦女和老人也不放過。

  非常奇怪的是,所以這一切————戰劍的叮當聲,垂死者的呻吟聲,羅馬人勝利的歡呼聲,都是這樣地遙遠,似乎是在半個多世紀以前發出的。阿基米德突然以一種可怕的清醒回想起自己乘一艘小船從亞歷山大到敘拉古所經歷的漫長而又十分危險的旅程。在危機四伏的不平靜的大海中,綠色的波濤的巔峰翻騰著白色的大理石般的泡沫,不停地撞擊著毫無保護的不堅固的小船,船上可憐的人們覺得好像無論是人,還是超人的力量都已經不能把他們從海神的懷抱里解救出來。 而就在這時,舵手使出全身的力氣掌穩沉重的船舵,高高地向上搬動舵尾,用力地沖向那轟隆作響的搖蕩的浪山。船象一匹戴上嚼子的馬,戰栗著,一會兒呆立在高高的浪峰上,一會兒又搖晃著跌進隨之而來的無底的深淵。。。。。。

  船駛離亞歷山大之時,裝飾著色彩繽紛的船帆,宛如一位服裝時髦的美女,而抵達敘拉古時,卻遍體鱗傷,千瘡百孔,失去了桅桿和船帆,簡直就是一個衣衫襤褸的女乞丐了。。。。。。

  一個羅馬兵兇惡的面孔突然出現在眼前,在他身后是一群形形色色的敘拉古人,正在走去迎接無數條載著有半死不活的航海者的戰船。這個外國的不速之客從哪里來?是怎么來的呢?這個人張牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德卻聽不見他的話。往事仍然把阿基米德死死地拖住不放,忘卻現實的銷魂的魔力還沒有退卻。。。。。。

  幻影沒有消失。在它還沒有最后填滿整個房間,把整個古老的敘拉古陽光充足的港灣里毫無剩余地從房間里排擠出去之前,它在數學家視線模糊的眼睛里仍然在擴大,擴大。啊,原來這里還有個人。這時,一個強盜,殺人兇手找到了數學家阿基米德的住宅。這個殘忍的羅馬士兵————數學家以前幾乎沒有想過的死亡就這樣悄悄地向她逼近了。

  "別動我的圖案!"老人聲音低微,但語氣卻強硬地命令道。這就是他說的最后一句話。一把寬大的雙刃劍用力地砍在這位偉大的世界公民頭發斑白,疲憊不堪的,但卻威嚴自豪,充滿靈感的頭顱上。。。。。。

  據說,阿基米德就這樣在位于被羅馬人攻取并搶劫的敘拉古的一條街道上的房間里被殺害了。甚至羅馬主將馬爾采勒,這個長期徒勞地企圖占領這座城市的不共戴天的,陰險的敵人,在得知這位最偉大的學者和最熱情和無畏的愛國主義者的死訊之后,也感到極度的悲傷。

初中數學教案2

  教學目標

  1.使學生正確理解的意義,掌握的三要素;

  2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;

  3.使學生初步理解數形結合的思想方法.

  教學重點和難點

  重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.

  難點:正確理解有理數與上點的對應關系.

  課堂教學過程 設計

  一、從學生原有認知結構提出問題

  1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

  2.用“射線”能不能表示有理數?為什么?

  3.你認為把“射線”做怎樣的`改動,才能用來表示有理數呢?

  待學生回答后,教師指出,這就是我們本節課所要學習的內容——.

  二、講授新課

  讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

  與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

  在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.

  進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.

  三、運用舉例 變式練習

  例1 畫一個,并在上畫出表示下列各數的點:

  例2 指出上A,B,C,D,E各點分別表示什么數.

  課堂練習

  示出來.

  2.說出下面上A,B,C,D,O,M各點表示什么數?

  最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

  四、小結

  指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

  本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.

  五、作業

  1.在下面上:

  (1)分別指出表示-2,3,-4,0,1各數的點.

  (2)A,H,D,E,O各點分別表示什么數?

  2.在下面上,A,B,C,D各點分別表示什么數?

  3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中數學教案3

  學習目標

  1.理解平行線的意義兩條直線的兩種位置關系;

  2.理解并掌握平行公理及其推論的內容;

  3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;

  學習重點

  探索和掌握平行公理及其推論.

  學習難點

  對平行線本質屬性的理解,用幾何語言描述圖形的性質

  一、學習過程:預習提問

  兩條直線相交有幾個交點?

  平面內兩條直線的位置關系除相交外,還有哪些呢?

  (一)畫平行線

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據此方法練習畫平行線:

  已知:直線a,點B,點C.

  (1)過點B畫直線a的平行線,能畫幾條?

  (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

  (二)平行公理及推論

  1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

  ②過點C畫直線a的平行線,能畫 條;

  ③你畫的直線有什么位置關系? 。

  ②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

  (一)選擇題:

  1、下列推理正確的是 ( )

  A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

  C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

  2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )

  A.0個 B.1個 C.2個 D.3個

  (二)填空題:

  1、在同一平面內,與已知直線L平行的.直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。

  2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:

  (1)L1與L2 沒有公共點,則 L1與L2 ;

  (2)L1與L2有且只有一個公共點,則L1與L2 ;

  (3)L1與L2有兩個公共點,則L1與L2 。

  3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

  4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

初中數學教案4

  把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

  一、教材內容分析

  本節課是數學人教版七年級上冊第三章第二節第二小節的內容。這是一節“概念加例題型”課,此種課型中的學習內容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節課主要內容是利用移項解一元一次方程。是學生學習解一元一次方程的基礎,這一部分內容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎。這類課一般采用“導學導教,當堂訓練”的方式進行,教師指導學生學習的重點一般不放在概念上,要特別留意學生運用概念解題或做與例題類似的習題時,對概念的理解是否到位。

  二、教學目標:

  1.知識與技能:(1)找相等關系列一元一次方程;(2)用移項解一元一次方程。(3)掌握移項變號的基本原則

  2.過程與方法:經歷運用方程解決實際問題的過程,發展抽象、概括、分析問題和解決問題的能力,認識用方程解決實際問題的關鍵是建立相等關系。

  3.情感、態度:通過具體情境引入新問題,在移項法則探究的過程中,培養學生合作意識,滲透化歸的思想。

  三、學情分析

  針對七年級學生學習熱情高,但觀察、分析、概括能力較弱的特點,本節從實際問題入手,讓學生通過自己思考、動手,激發學生的求知欲,提高學生學習的`興趣與積極性。在課堂教學中,學生主要采取自學、討論、思考、合作交流的學習方式,使學生真正成為課堂的主人,逐步培養學生觀察、概括、歸納的能力。

  四、教學重點:利用移項解一元一次方程。

  五、教學難點:移項法則的探究過程。

  六、教學過程:

  (一)情景引入

  引例:請同學們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是( )

  A.3個老頭,4個梨 B.4個老頭,3個梨 C.5個老頭,6個梨 D.7個老頭,8個梨

  設計意圖:大部分同學會用算術法(答案代入法)來解答的,而這類問題我們如何用方程來解答呢?激起學生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項

  (二)出示學習目標

  1.理解移項法,明確移項法的依據,會解形如ax+b=cx+d類型 的一元一次方程。

  2.會建立方程解決簡單的實際問題。

  設計意圖:這兩個目標的達成,也驗證了本節課學生自學的效果,這也是本節課的教學重難點。

  (三)導教導學

  1.出示自學指導

  自學教材問題2到例3的內容,思考以下問題:(1)問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題可作為列方程的依據的等量關系是什么?(2)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)

  2.學生自學

  學生根據自學提綱進行獨立學習,教師巡視,對自學速度慢的、自學能力差的、注意力不夠集中的學生給以暗示和幫扶,有利于自學后的成果展示。

  3.交流展示(小組合作展示)

  (合作交流一)教材問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題哪個相等關系可作為列方程的依據呢?

  問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

  1)設未知數:設這個班有X名學生,根據兩種不同分法這批書的總數就有兩種表示方法,即這批書共有(3 X+20)本或(4X-25)本。

  2)找相等關系:這批書的總數是一個定值,表示同一個量的兩個不同的式子相等。(板書)

  3)根據等量關系列方程: 3x+20 = 4x-25(板書)

  【總結提升】解決“分配問題”應用題的列方程的基本要點:

  A.找出能貫穿應用題始終的一個不變的量.

  B.用兩個不同的式子去表示這個量.

  C.由表示這個不變的量的兩個式子相等列出方程.

  設計意圖:因為在自學提綱的引領下,每個小組自主學習的效果不同,反饋的意見不同,所以在展示中首先要展示學生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。

  (變式訓練1)某學校組織學生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數

  (只設列即可)

  (變式訓練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?

  設計意圖:檢查提問學生對“分配問題”應用題掌握的情況,學生回答后教師板書所列方程為后面教學做好鋪墊。學生會帶著“如何解這類方程?”的好奇心過渡到下一個環節的學習。

  (合作交流二)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟。

  (板書 )把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。

  《解一元一次方程——移項》教學設計(魏玉英)

  師:為什么等式(方程)可以這樣變形?依據什么?

  (出示)依據等式的基本性質1.即:等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式.

  師:解一元一次方程中“移項”起了什么作用?

  (出示) 通過移項,使等號左邊僅含未知數的項,等號右邊僅含常數的項,使方程更接近x=a的形式.(與課題對照滲透轉化思想)

  (基礎訓練)搶答:判斷下列移項是否正確,如有錯誤,請修改

  《解一元一次方程——移項》教學設計(魏玉英)

  設計理念:讓各個小組憑著勢力去搶答。這五個習題重點考察學生對移項的掌握是本節課的重難點,習題分層設計且成梯度分布。

  【歸納板書】 解“ax+b=cx+d”型的一元一次方程的步驟:(1) 移項,(2) 合并同類項,(3) 系數化為1

  (綜合訓練) 解下列方程(任選兩題)

  設計理念:第(2)、(3)兩題未知數系數是相同類型的,所以讓學生任選一題即可。通過綜合訓練能讓學生更進一步鞏固用移項和合并同類項去解方程了。

  (中考試練)若x=2是關于x的方程2x+3m-1=0的解,則m的值為

  設計理念:通過本題的訓練讓學生明確中考在本節的考點,同時激勵學生在數學知識的學習中要抓住知識的核心和重點。

  (四)我總結、我提高:

  通過本節課的學習我收獲了。

  設計意圖:通過小組之間互相談收獲的方式進行課堂小結,讓學生相互檢查本節課的學習效果。可以引導學生從本節課獲得的知識、解題的思想方法、學習的技巧等方面交流意見。

  (五)當堂檢測(50分)

  1.下列方程變形正確的是( )

  A.由-2x=6, 得x=3

  B.由-3=x+2, 得x=-3-2

  C.由-7x+3=x-3, 得(-7+1)x=-3-3

  D.由5x=2x+3, 得x=-1

  2.一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設出未知數和列出方程即可)

  3.(20分)已知x=1是關于x的方程3m+8x=m+x的解,求m的值。

  (師生活動)學生獨立答題,教師巡回檢查,對先答完的學生進行及時批改,并把得滿分的學生作為小老師對后解答完的學生的檢測進行評定,最后老師進行小結。

  (六)實踐活動

  請每一位同學用自己的年齡編一 道“ax+b=cx+d”型的方程應用題,并解答。先在組內交流,選出組內最有創意的一個記在題卡上,自習在全班進行展示 。

  設計意圖:

  讓學生課后完成,讓學生深深體會到數學來源于生活而又服務于生活,體現了數學知識與實際相結合。

初中數學教案5

  教學目標:

  1、引導同學們領略數學隱藏在生活中的迷人之處;

  2、培養同學們對數學的興趣。

  教學內容:

  生活中的數學。

  教學方法:

  啟發探索、小游戲

  教具安排:

  多媒體、剪紙、小剪刀三把

  教學過程:

  師:同學們,從小學到現在我們都在跟數學打交道,能說說大家對數學的感受嗎?

  學生討論。

  師:同學們,不管以前你們喜不喜歡數學,但老師要告訴大家,其實數學很有趣,它不僅出現在我們的課本,更隱藏在生活的每個角落,只要我們仔細探究,就會發現它在我們的周圍閃著迷人的光,希望大家從今天開始,喜歡數學,與數學成為好朋友,好好領略好朋友帶給我們的美的享受。事不宜遲,現在我們馬上開始我們的數學探究之旅。首先,我們來玩個小游戲:

  請大家拿出筆和紙,根據下面的步驟來操作,你會有驚人的發現。(PPT演示)

  [1]首先,隨意挑一個數字(0、1、2、3、4、5、6、7)

  [2]把這個數字乘上2

  [3]然后加上5

  [4]再乘以50

  [5]如果你今年的生日已經過了,把得到的數目加上1759;如果還沒過,加1758

  [6]最后一個步驟,用這個數目減去你出生的那一年(公元的)

  師:發現了什么?第一個數字是不是你一開始選擇的數字呢?那接下來的兩個呢?如無意外,就是你的年齡了。是不是很有趣呢?至于為什么會這樣課后大家仔細想想自然就明白啦,這就是數學的魅力所在了。接下來我們來嘗試幫助格尼斯堡的居民解決下面的問題(PPT演示):格尼斯堡建造在普蕾爾河岸上。7座橋連接著兩個島和河岸,如圖所示:

  網路圖

  居民們的一項普遍愛好是嘗試在一次行走中跨過所有的7座橋而不

  重復經過任何一座橋。同學們,你們能幫助他們實現這個想法嗎?拿出紙和筆設計的路線。

  學生思考設計。

  師:同學們行嗎?事實上,著名數學家歐拉已經證明不能解決這個問題了,可是這是為什么呢?別急,我們繼續看下去。

  1944年的空襲,毀壞了大多數的舊橋,格尼斯堡在河上重新建了5座橋,如圖:

  B

  現在請同學們再嘗試一下,在一次行走中跨過所有的5座橋而不重復經過任何一座橋。

  學生思考。

  師:同學們,這次行得通了吧?那么為什么呢?有沒有同學可以說一下他的想法?

  其實,我們的歐拉大師經過研究大量類似的網絡,證明了這樣的事實(PPT演示):要走完一條路線而其中每一段行程只許經過一次,只有當奇數結點的數目是0或2時才是有可能的,在其他情況下,如果不走回頭路,就不能歷遍整個網絡。

  他還發現:如果有兩個奇結點,那么經過整個路線的形成必須從一個

  奇結點開始,到另一個奇結點結束。

  師:我們來看一下是不是這樣的?第一個圖奇結點的個數為3,第二個圖奇結點的個數減少到2個了,看來真的是這樣的。

  現在請同學們自己在練習本上解決這個問題:(PPT演示)

  下面是一幅農場的大門的圖。如果筆不離紙,又不重復經過任一條線,有沒有可能畫成它?

  學生思考討論。

  師:我們看到它的奇結點個數為4,由歐拉的證明我們知道不能一筆畫成。

  那如果農場主將門的形狀做成這樣呢?(PPT演示)

  學生嘗試。

  師:是不是可以啦,為什么呢?

  生:奇結點個數為2.

  師:這種不用走回頭路而歷遍整條線路的情況,不僅僅具有趣味性,在現實生活中具有很重要的實用性,比如,我們的郵遞員和煤氣抄表員,不走回頭路意味著可以節省很多寶貴的時間。看來,數學并不像

  某些時候想的那樣沒什么用處了吧?

  下面我們繼續我們的奧秘之類吧。

  今天我們班有同學生日嗎?如果你生日,爸爸媽媽給你買了一個正方形的'蛋糕,你要把它切成不同形狀的平均大小的7塊,怎么切?能行嗎?嘗試一下。

  其實很簡單,你只需要把正方形的周邊(即周長)分成7個等長,定出蛋糕的中心,從周邊劃分等長的標記切向中電,(如圖所示)即可。

  為什么呢?這里我們用到三角形等高等底面積相等的性質。

  吃完了蛋糕,我們來觀賞一下百合花。(PPT演示):

  一個鄉村的池塘里種了美麗的百合花,百合花生長得很快,使它們覆蓋的面積每天增加一倍。30天后,長滿了整個池塘,那么池塘只被百合花覆蓋一半時是多少天呢?同學們,你知道嗎?

  學生討論。

  師:答案是29天,多么神奇,是吧?潛意識里我們很難接受答案就是29天,只與30天差一天。但用數學我們很容易很清楚地知道是29天,奧秘就在“它們覆蓋的面積每天增加一倍”這句話里面。你看,數學是多么聰慧、多么神奇的家伙!

  其實,除了以上我們看到的一些有趣的數學影子外,我們的日常生

初中數學教案6

  一、學生起點分析

  學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

  反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

  可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

  二、學習任務分析

  本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

  并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

  ● 知識與技能目標

  1.理解勾股定理逆定理的具體內容及勾股數的概念;

  2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標

  1.經歷一般規律的探索過程,發展學生的抽象思維能力;

  2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

  ● 情感與態度目標

  1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

  2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

  教學重點

  理解勾股定理逆定理的具體內容。

  三、教法學法

  1.教學方法:實驗猜想歸納論證

  本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

  但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

  (1)從創設問題情景入手,通過知識再現,孕育教學過程;

  (2)從學生活動出發,通過以舊引新,順勢教學過程;

  (3)利用探索,研究手段,通過思維深入,領悟教學過程。

  2.課前準備

  教具:教材、電腦、多媒體課件。

  學具:教材、筆記本、課堂練習本、文具。

  四、教學過程設計

  本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

  登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

  第一環節:情境引入

  內容:

  情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

  2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

  意圖:

  通過情境的創設引入新課,激發學生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

  第二環節:合作探究

  內容1:探究

  下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

  1.這三組數都滿足 嗎?

  2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

  意圖:

  通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

  效果:

  經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

  從上面的分組實驗很容易得出如下結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  內容2:說理

  提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

  意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  滿足 的三個正整數,稱為勾股數。

  注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

  活動3:反思總結

  提問:

  1.同學們還能找出哪些勾股數呢?

  2.今天的結論與前面學習勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

  4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

  意圖:進一步讓學生認識該定理與勾股定理之間的關系

  第三環節:小試牛刀

  內容:

  1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴大相同的倍數后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習,加強對勾股定理及勾股定理逆定理認識及應用

  效果

  每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

  第四環節:登高望遠

  內容:

  1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

  解答:由題意畫出相應的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

  效果:

  學生能用自己的'語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

  第五環節:鞏固提高

  內容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

  效果:

  學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

  第六環節:交流小結

  內容:

  師生相互交流總結出:

  1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

  2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

  意圖:

  鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

  效果:

  學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

  第七環節:布置作業

  課本習題1.4第1,2,4題。

  五、教學反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

  2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

  3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

  4.注重對學習新知理解應用偏困難的學生的進一步關注。

  5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

  由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

  附:板書設計

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠

初中數學教案7

  生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。

  側棱:相鄰兩個側面的交線。棱柱的所有側棱長都相等。

  底面:棱柱有上、下兩個底面,形狀相同。

  側面:棱柱的側面都是平行四邊形。

  立體圖形的'分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。

  棱柱:分為直棱柱、斜棱柱。直棱柱的側面是長方形。

  特殊的四棱柱:長方體、正方體。正方體的每個面都是正方形。

  圓柱:上、下兩個面都是圓形,側面展開圖是長方形。

  圓錐:底面是圓形,側面展開圖是扇形。

  截面:用一個平面去截一個幾何體,截出的面。

  球:用一個平面去截,截面圖形是圓形。

  正方體的截面:可以是正方形、長方形、梯形、三角形。

  圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。

  展開與折疊:兩個面出現在同一位置的展開圖形,是不可折疊的。

  從三個方向看物體的形狀:正面看(主視圖)、左面看(側視圖)、上面看(俯視圖)

初中數學教案8

  一、知識與技能

  1.能靈活列反比例函數表達式解決一些實際問題.

  2.能綜合利用物理杠桿知識、反比例函數的知識解決一些實際問題.

  二、過程與方法

  1.經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題.

  2.體會數學與現實生活的緊密聯系,增強應用意識,提高運用代數方法解決問題的能力.

  三、情感態度與價值觀

  1.積極參與交流,并積極發表意見.

  2.體驗反比例函數是有效地描述物理世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具.

  教學重點

  掌握從物理問題中建構反比例函數模型.

  教學難點

  從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數模型,教學時注意分析過程,滲透數形結合的思想.

  教具準備

  多媒體課件.

  教學過程

  一、創設問題情境,引入新課

  活動1

  問屬:在物理學中,有很多量之間的變化是反比例函數的關系,因此,我們可以借助于反比例函數的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.

  (1)求I與R之間的函數關系式;

  (2)當電流I=0.5時,求電阻R的值.

  設計意圖:

  運用反比例函數解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.

  師生行為:

  可由學生獨立思考,領會反比例函數在物理學中的綜合應用.

  教師應給“學困生”一點物理學知識的引導.

  師:從題目中提供的信息看變量I與R之間的反比例函數關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數k的值.

  生:(1)解:設I=kR ∵R=5,I=2,于是2=k5,所以k=10,∴I=10R.

  (2)當I=0.5時,R=10I=100.5=20(歐姆).

  師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么樣的原理呢?

  生:這是古希臘科學家阿基米德的名言.

  師:是的.公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”:若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;

  阻力×阻力臂=動力×動力臂(如下圖)

  下面我們就來看一例子.

  二、講授新課

  活動2

  小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.

  (1)動力F與動力臂l有怎樣的函數關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?

  (2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?

  設計意圖:

  物理學中的很多量之間的變化是反比例函數關系.因此,在這兒又一次借助反比例函數的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.

  師生行為:

  先由學生根據“杠桿定律”解決上述問題.

  教師可引導學生揭示“杠桿乎衡”與“反比例函數”之間的關系.

  教師在此活動中應重點關注:

  ①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數的關系;

  ②學生能否面對困難,認真思考,尋找解題的途徑;

  ③學生能否積極主動地參與數學活動,對數學和物理有著濃厚的`興趣.

  師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.

  生:解:(1)根據“杠桿定律”有Fl=1200×0.5.得F=600l

  當l=1.5時,F=6001.5=400.

  因此,撬動石頭至少需要400牛頓的力.

  (2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據“杠桿定律”有Fl=600,l=600F.

  當F=400×12=200時,l=600200=3.3-1.5=1.5(米)

  因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.

  生:也可用不等式來解,如下:

  Fl=600,F=600l.

  而F≤400×12=200時.

  600l ≤200

  l≥3.

  所以l-1.5≥3-1.5=1.5.

  即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.

  生:還可由函數圖象,利用反比例函數的性質求出.

  師:很棒!請同學們下去親自畫出圖象完成,現在請同學們思考下列問題:

  用反比例函數的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?

  生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數且k>0),所以根據“杠桿定理”得Fl=k,即F=kl(k為常數且k>0)

  根據反比例函數的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.

  師:其實反比例函數在實際運用中非常廣泛.例如在解決經濟預算問題中的應用.

  活動3

  問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.

  (1)求y與x之間的函數關系式;

  (2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?

  設計意圖:

  在生活中各部門,經常遇到經濟預算等問題,有時關系到因素之間是反比例函數關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數關系式,進而用函數關系式解決一個具體問題.

  師生行為:

  由學生先獨立思考,然后小組內討論完成.

  教師應給予“學困生”以一定的幫助.

  生:解:(1)∵y與x-0.4成反比例,∴設y=kx-0.4(k≠0).

  把x=0.65,y=0.8代入y=kx-0.4,得

  k0.65-0.4=0.8.

  解得k=0.2,∴y=0.2x-0.4=15x-2

  ∴y與x之間的函數關系為y=15x-2

  (2)根據題意,本年度電力部門的純收入為

  (0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(億元)

  答:本年度的純收人為0.6億元,師生共析:

  (1)由題目提供的信息知y與(x-0.4)之間是反比例函數關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數的值;

  (2)純收入=總收入-總成本.

  三、鞏固提高

  活動4

  一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數,請根據下圖中的已知條件求出當密度ρ=1.1 kg/m3時二氧化碳氣體的體積V的值.

  設計意圖:

  進一步體現物理和反比例函數的關系.

  師生行為

  由學生獨立完成,教師講評.

  師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數關系.

  生:V和ρ的反比例函數關系為:V=990ρ.

  生:當ρ=1.1kg/m3根據V=990ρ,得

  V=990ρ=9901.1=900(m3).

  所以當密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3.

  四、課時小結

  活動5

  你對本節內容有哪些認識?重點掌握利用函數關系解實際問題,首先列出函數關系式,利用待定系數法求出解析式,再根據解析式解得.

  設計意圖:

  這種形式的小結,激發了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創造了在數學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.

  師生行為:

  學生可分小組活動,在小組內交流收獲,然后由小組代表在全班交流.

  教師組織學生小結.

  反比例函數與現實生活聯系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數之間的不可分割的關系.

  板書設計

初中數學教案9

  教學目標

  1, 整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;

  2, 能區分兩種不同意義的量,會用符號表示正數和負數;

  3, 體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。

  教學難點 正確區分兩種不同意義的量。

  知識重點 兩種相反意義的量

  教學過程(師生活動) 設計理念

  設置情境

  引入課題 上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生

  活中僅有這些“以前學過的數”夠用了嗎?下面的例子

  僅供參考.

  師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…

  問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?

  學生活動:思考,交流

  師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).

  問題2:在生活中,僅有整數和分數夠用了嗎?

  請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。

  (也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

  學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。 先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多

  地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興趣,所以創設如下的問題情境,以盡量貼近學生的實際.

  這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。

  以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。

  分析問題

  探究新知 問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?

  這些問題都必須要求學生理解.

  教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.

  這階段主要是讓學生學會正數和負數的.表示.

  強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量. 這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。

  舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.

  問題4:請同學們舉出用正數和負數表示的例子.

  問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.

  能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性

  課堂練習 教科書第5頁練習

  小結與作業

  課堂小結 圍繞下面兩點,以師生共同交流的方式進行:

  1, 0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;

  2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。

  本課作業 教科書第7頁習題1.1 第1,2,4,5(第3題作為下節課的思考題。

  作業可設必做題和選 做題,體現要求的層次性,以滿足不同學生的需要

初中數學教案10

  一、素質教育目標

  (一)知識教學點

  1.理解畫兩個角的差,一個角的幾倍、幾分之一的方法.

  2.掌握用量角器畫兩個角的和差,一個角的幾倍、幾分之一的畫法.用三角板畫一些特殊角的畫法.

  (二)能力訓練點

  通過畫角的和、差、倍、分,三角板和量角器的使用,培養學生動手能力和操作技巧.

  (三)德育滲透點

  通過利用三角板畫特殊角的方法,說明幾何知識常用來解決實際問題,進行幾何學在生產、生活中起著重要作用的教育,鼓勵他們努力學習。

  (四)美育滲透點

  通過學生動手操作,使學生體會到簡單幾何圖形組合的多樣性,領會幾何圖形美.

  二、學法引導

  1.教師教法:嘗試指導,以學生操作為主.

  2.學生學法:在教師的指導下,積極動手參與,認真思考領會歸納.

  三、重點、難點、疑點及解決辦法

  (一)重點

  用量角器畫角的和、差、倍、分及用三角板畫特殊角.

  (二)難點

  準確使用量角器畫一個角的幾分之一.

  (三)疑點

  量角器的正確使用.

  (四)解決辦法

  通過正確指導,規范操作,使學生掌握畫法要領,并以練習加以鞏固,從而解決重難點及疑點.

  四、課時安排

  1課時

  五、教具學具準備

  一副三角板、量角器.

  六、師生互動活動設計

  1.通過教師設,學生動手及思考創設出情境,引出課題.

  2.通過學生嘗試解決、教師把握幾何語言美的方法,放手由學生自己解決有關角的畫法.

  3.通過提問的形式完成小結.

  七、教學步驟

  (一)明確目標

  使學生會用量角器畫角及角的和、差、倍、分,培養學生動手能力和操作能力.

  (二)整體感知

  通過教師指導,學生動手操作完成對畫圖能力和操作能力的掌握.

  圖1

  (三)教學過程

  創設情境,引出課題

  教師在黑板上畫出(如圖1).

  師:現有工具量角器和三角板,誰到黑板上畫一個角等于呢?請同學們觀察他的操作,老師要找同學說明他的畫法.

  【教法說明】有上節課的基礎,學生會先用量角器測量的度數,再畫一個度數等于這個度數的角,學生也會敘述其畫法.

  提出問題:若老師想畫的余角、補角呢?

  學生會想到畫、減去的度數后的角,即為的余角、補角.

  師:是否還有別的方法?

  這時學生一定會積極思考,立刻回答還有困難.教師抓住時機點明課題:同學們不用著急,今天我們就研究角的畫法,學習用三角板、量角器畫角的和、差、倍、分以及一些特殊角.老師提出的問題你們會解決的.另外,角的畫法在我們日常生活中應用廣泛,希望同學們認真學習.(板書課題……)

  [板書]1.7角的畫法

  探究新知

  1.畫一個角等于已知角

  找學生再次敘述方法:用量角器量出已知角的度數,再畫一個等于這個度數的角.

  操作:略.

  注意:量角器使用三要素:對中、重合、讀數.

  2.用三角板畫特殊角

  師:請同學們準備好練習本和一副三角板,再找同學說出一副三角板中各角度數.

  學生活動:用三角板在練習本上畫出直角、角、角、角.

  提出問題:你能利用一副三角板畫出、的角嗎?

  學生活動:討論畫、的角的方法,在練習本上畫出圖形,同桌可相互交換檢查,找學生到黑板上畫.

  【教法說明】有前一節角的和、差的理解和、 、角的畫法,學生對畫、的角不會有困難.因此,教師要敢于放手,讓學生自己去嘗試解決問題的方法,也培養他們的動手操作的能力,但對于畫法學生不會敘述得太嚴密,教師要把關,培養學生幾何語言的嚴密性.

  教師根據前面學生所畫圖形,引導學生寫出畫法.(以角的畫法為例,與例題相符.)

  圖1

  畫法如圖l,①利用三角板,畫

  ②在的外部,再畫就是要畫的的角.

  反饋練習:用三角板畫、的'角.

  【教法說明】由學生獨立完成以上三個角的畫圖.教師不給任何提示,只要求寫出畫角的方法,注意觀察畫法,是否寫出了“在角的內部畫的角”.區別例題中兩角和的畫法.

  提出問題:由一副三角板可以畫出多少度的角?

  學生討論得出可以畫出的角.

  這些角都是的倍數,用三角板也只限畫這樣的角.由此得出:由量角器畫任意角的和、差、倍、分角.

  3.畫任意兩個角的和差及一個角的幾倍、幾分之一.

  問題:如圖1,已知、(),如何畫出與的和?與的差?

  圖1

  學生活動:討論畫,的方法,并在練習本上根據自己的想法畫圖.

  根據學生的討論回答,老師歸納以下方法:

  (1)用量角器量出、的度數,計算出它們度數的和、差,再用量角器畫出等于它們度數和、差的角.

  (2)用量角器把移到上,如果本方法.

  圖1

  教師示范,寫出兩種畫法:

  畫法一:(1)用量角器量得,.

  (2)畫,就是要畫的角如圖1.

  圖2

  畫法二:(1)用量角器畫.

  (2)以點為頂點,射為一邊,在的外部畫.

  就是要畫的角如圖2.

  學生活動:敘述用兩種方法畫的畫法.出示例1由學生完成,要求用兩種方法,找同學板演.

  例1?已知,畫出它們的余角.

  畫法一:(1)量得.

  圖1圖2

  (2)畫,就是所要畫的角,見圖1.

  畫法二:利用三角板,以的頂點為頂點,一邊為邊,畫直角,使的另一邊在直角的內部,如圖2,就是所要畫的角.

  【教法說明】第二種畫法學生可能敘述或書寫不太完整,教師要注意其嚴密性.

  反饋練習

  1.已知,畫出它的補角.

  2.已知,畫它們的角平分線.

  3.畫的角,并把它分成三等份.

  【教法說明】本練習只要求圖形正確即可,不要求寫出畫法.

  (四)總結、擴展

  以提問的形式歸納出以下知識脈絡:

  八、布置作業

  課本第46頁習題1.5A組第2、3題.

初中數學教案11

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.

  2.掌握直線平行的條件,領悟歸納和轉化的數學思想

  學習重難點:探索并掌握直線平行的條件是本課的`重點也是難點.

  一、探索直線平行的條件

  平行線的判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )

  2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.

  五、作業課本15頁-16頁練習的1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空

  間觀念,推理能力和有條理表達能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

  學習重點:直線平行的條件的應用.

  學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.

  一、學習過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習:

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因為∠1=∠4,所以DE∥AB

  B.因為∠2=∠3,所以AB∥EC

  C.因為∠5=∠A,所以AB∥DE

  D.因為∠ADE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

初中數學教案12

  一學期的工作結束了,可以說緊張忙碌卻收獲多多。回顧這學期的工作,我教九(4)班的數學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經驗,吸取教訓,使以后的工作能夠有效、有序地進行,現將教學所得總結如下:

  一、在備課方面

  在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數。

  二、在教學過程方面

  在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發現知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的內在規律、性質和聯系。”只有充分發揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發展。但還是難免受傳統教學觀念的影響,加之經驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學校“”的教學模式下,才開始進一步嘗試,并在不斷的嘗試中總結經驗。

  三、工作中存在的問題

  1)、教材挖掘不深入。

  2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。

  3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導

  4)、差生末抓在手。由于對學生的了解不夠,對學生的'學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。

  四、今后努力的方向

  1)、加強學習,學習新教學模式下新的教學思想。

  2)、熟讀初一到初三的數學教材,深入挖掘教材,進一步把握知識點和考點。

  3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發事件方法。

  4)、加強轉差培優力度。

  5)、加強教學反思,加大教學投入。

  一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業務水平。

初中數學教案13

  初中數學分層次教學案例

  【案例主題:】學生參與教學,體現了現代教學理念:活動、合作、自由、民主、創新。

  【背景:】我在進行數學七年級上冊圖形的認識的應用教學時,處理定理時,隨著教學過程的深入,很有感想:??

  例題:課本p123證明兩個角之間的關系,

  請同學們總結一下他們可能出現的情況。

  【活動過程】師:誰能總結一下判定兩個角比較大小的方法?(學生都在緊張的思考中)(突然間,我發現一名平時學習較困難的學生閆家銜這次第一個舉起了手,很驚奇,便馬上讓他發言了。也有了我思想上的一次飛躍。)

  生:我認為前面,度量,而剛才第一條,第二條的疊合法。(這時,教室里鴉雀無聲,個別同學在譏笑,這位學生頓時有些難堪,想坐下去,我趕緊制止。)

  師:很好!那你準備應該怎么做呢?生:嗯,(一下子來勁了):接著這位同學上黑板畫了圖,寫出自己度量的方法和自己的想法。

  師:剛才閆家銜同學真的不錯,不但提出了新的方法,而且還給出了說理,我和全班同學都為你今天的表現感到非常高興(教室里響起一片掌聲)。要有勇氣展示自己,你今天的表現就非常非常地出色,你今后的表現一定會更出色。好,下面我就讓我們一同來總結一下菱形的證明方法。

  在師生的共同研討下得出了這些方法。

  師:今天的課程內容還有一項,那就是請閆家銜同學談談這堂課的感想。

  生:??以前我不敢發言,我怕說的不對會被同學們笑話,而今天的他的方法恰好是我前幾天才預習過的,所以一下子??我今天才發現不是這樣??我今后還會努力發言的??

  【理念反思】:從這一個學生的舉手發言到說得頭頭是道的.“意外”中,我明白了:學生需要一個能充分展示自我的自由空間,作為老師,我們需要給學生一個自由的民主的氛圍,能充分培養學生的自信,使“學困生”也能產生發言的欲望,也能對問題暢所欲言,教師還應能及時捕捉到這一閃光點,給每一位學生都有展示的機會。也就是說要使學生全部積極參與教學,因為它集中體現了現代課程理念:活動、合作、自由、民主、創新。

  1、活動、合作是現代課程中的新的理念,只有參與,才能合作創新。

  2、民主是現代課程中的重要理念。民主最直接的體現是在課程實施中學生能夠平等地參與。沒有主動參與,只有被動接受,就沒有民主可言。相反,如果沒有民主,學生的參與

  就不是主動性參與,而是被動的、消極的參與。

  3、在提問時,應設計開放性的問題,如:“請你幫助設計一下,有幾種方案等問題?這樣才沒有限制學生的思維,給學生創設一個自由的空間,學生在這個空間中可以按自己的方式展開想象,才能暢所欲言。

  4、在課堂上,老師應不只關注“優等生”,而應平等地對待每一個學生,讓學困生”和“學優生”同時享有尊嚴和擁有一份自信。特別是發現到一個學困生在舉了手時,應及時給“學困生”展示的機會,讓他們發言,學生在發言中,雖然有時不能把問題完全解決,老師也要充分的肯定這個學生的成績和能夠大膽發言的勇氣。

初中數學教案14

  今天小編為大家精心整理了一篇有關初中數學教案之公式的相關內容,以供大家閱讀!

  教學設計示例一——公式

  教學目標

  1.了解公式的意義,使學生能用公式解決簡單的實際問題;

  2.初步培養學生觀察、分析及概括的能力;

  3.通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

  教學建議

  一、教學重點、難點

  重點:通過具體例子了解公式、應用公式.

  難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

  二、重點、難點分析

  人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

  三、知識結構

  本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

  2.在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

  3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

  教學設計示例二——公式

  一、教學目標

  (一)知識教學點

  1.使學生能利用公式解決簡單的實際問題.

  2.使學生理解公式與代數式的關系.

  (二)能力訓練點

  1.利用數學公式解決實際問題的能力.

  2.利用已知的公式推導新公式的能力.

  (三)德育滲透點

  數學來源于生產實踐,又反過來服務于生產實踐.

  (四)美育滲透點

  數學公式是用簡潔的.數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美.

  二、學法引導

  1.數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點

  2.學生學法:觀察分析推導計算

  三、重點、難點、疑點及解決辦法

  1.重點:利用舊公式推導出新的圖形的計算公式.

  2.難點:同重點.

  3.疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀,自制膠片。

  六、師生互動活動設計

  教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式.

  七、教學步驟

  (一)創設情景,復習引入

  師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏.

  在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題.

  板書:公式

  師:小學里學過哪些面積公式?

  板書:S=ah

  (出示投影1)。解釋三角形,梯形面積公式

  【教法說明】讓學生感知用割補法求圖形的面積。

  (二)探索求知,講授新課

  師:下面利用面積公式進行有關計算

  (出示投影2)

  例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積S。

  師生共同分析:1.根據梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現在知道嗎?

  2.題中“M”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)

  學生口述解題過程,教師予以指正并指出,強調解題的規范性.

  【教法說明】1.通過分析,引導學生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量.2.用公式計算時,要先寫出公式,然后代入計算,養成良好的解題習慣.

  (出示投影3)

  例2如圖是一個環形,外圓半徑,內圓半徑求這個環形的面積

  學生討論:1.環形是怎樣形成的.2.如何求環形的面積討論后請學生板演,其他同學做在練習本上,教育巡回指導.

  評講時注意1.如果有學生作了簡便計算,則給予表揚和鼓勵:如果沒有學生這樣計算,則啟發學生這樣計算.

  2.本題實際上是由圓的面積公式推導出環形面積公式.

  3.進一步強調解題的規范性

  教法說明,讓學生做例題,學生能自己評判對與錯,優與劣,是獲取知識的一個很好的途徑.

  測試反饋,鞏固練習

  (出示投影4)

  1.計算底,高的三角形面積

  2.已知長方形的長是寬的1.6倍,如果用a表示寬,那么這個長方形的周長是多少?當時,求t

  3.已知圓的半徑,,求圓的周長C和面積S

  4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。

  (1)求A地到B地所用的時間公式。

  (2)若千米/時,千米/時,求從A地到B地所用的時間。

  學生活動:分兩次完成,每次兩題,兩人板演,其他同學在練習本上完成,做好后同桌交換評判,第一次可請兩位基礎較差的同學板演,第二次請中等層次的學生板演.

  【教法說明】面向全體,分層教學,能照顧兩極,使所有的同學有所發展.

  師:公式本身是用等號聯接起來的代數式,許多公式在實際中都有重要的用處,可以用公式直接計算還可以利用公式推導出新的公式.

  八、隨堂練習

  (一)填空

  1.圓的半徑為R,它的面積________,周長_____________

  2.平行四邊形的底邊長是,高是,它的面積_____________;如果,,那么_________

  3.圓錐的底面半徑為,高是,那么它的體積__________如果,,那么_________

  (二)一種塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積V,如果,,,V是多少?

  九、布置作業

  (一)必做題課本第xx頁x、x、x第xx頁x組x

  (二)選做題課本第xx頁xx組x

初中數學教案15

  1.初中數學教案模板

  1.課題

  填寫課題名稱(初中代數類課題)

  2.教學目標

  (1)知識與技能:

  通過本節課的學習,掌握......知識,提高學生解決實際問題的能力;

  (2)過程與方法:

  通過......(討論、發現、探究)的過程,提高......(分析、歸納、比較和概括)的能力;

  (3)情感態度與價值觀:

  通過本節課的學習,增強學生的學習興趣,將數學應用到實際生活中,增加學生數學學習的樂趣。

  3.教學重難點

  (1)教學重點:本節課的知識重點

  (2)教學難點:易錯點、難以理解的知識點

  4.教學方法(一般從中選擇3個就可以了)

  (1)討論法

  (2)情景教學法

  (3)問答法

  (4)發現法

  (5)講授法

  5.教學過程

  (1)導入

  簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節課的課題)

  (2)新授課程(一般分為三個小步驟)

  ①簡單講解本節課基礎知識點(例:類比一元一次方程的解法,講解一元一次不等式的解法和步驟)。

  ②歸納總結該課題中的重點知識內容,尤其對該注意的一些情況設置易錯點,進行強調。可以設計分組討論環節(例:分組討論一元一次不等式的解法,歸納總結一元一次不等式的方法步驟,設置系數化為一,負號要變號的易錯點)。

  ③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題(例:設置一元一次不等式的應用題,學生再次體會一元一次不等式解決實際問題,并且再次鞏固不等式的解法)。

  (3)課堂小結

  教師提問,學生回答本節課的收獲。

  (4)作業提高

  布置作業(盡量與實際生活相聯系,有所創新)。

  6.教學板書

  2.初中數學教案格式

  課程編碼:______________________________________

  總學時 / 周學時: /

  開課時間: 年 月 日 第 周至第 周

  授課年級、專業、班級:___________________________

  使用教材:_______________________________________

  授課教師:_______________________________________

  1.章節名稱

  2.教學目的

  3.課時安排

  4.教學重點、難點

  5.教學過程(包括教學內容、教師活動、學生活動、教學方法等)

  6.復習鞏固與作業要求

  7.教學環境及教具準備

  8.教學參考資料

  9.教學后記

  3.初中數學教案范文

  教學目的

  1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。

  2.使學生會列一元一次方程解決一些簡單的應用題。

  3.會判斷一個數是不是某個方程的解。

  重點、難點

  1.重點:會列一元一次方程解決一些簡單的應用題。

  2.難點:弄清題意,找出“相等關系”。

  教學過程

  一、復習提問

  一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

  解:設小紅能買到工本筆記本,那么根據題意,得1.2x=6

  因為1.2×5=6,所以小紅能買到5本筆記本。

  二、新授

  問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)

  算術法:(328-64)÷44=264÷44=6(輛)

  列方程:設需要租用x輛客車,可得44x+64=328

  解這個方程,就能得到所求的結果。

  問:你會解這個方程嗎?試試看?

  問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

  通過分析,列出方程:13+x=(45+x)

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的'解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發現了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?

  三、鞏固練習

  教科書第3頁練習1、2。

  四、小結

  本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業

  教科書第3頁,習題6.1第1、3題。

【初中數學教案】相關文章:

初中數學教案12-22

初中數學教案06-29

【推薦】初中數學教案12-22

【熱門】初中數學教案12-21

初中數學教案【推薦】12-21

初中數學教案【熱】12-21

人教版初中數學教案12-30

【精】初中數學教案12-30

【薦】初中數學教案12-30

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
在线人成亚洲播放网站 | 亚洲国产日韩一级视频网站 | 日韩精品福利性爱 | 亚洲午夜中文字幕在线网 | 亚洲第一区久久丁香 | 我要看亚洲中字幕毛带 |