高二數學的教學計劃

時間:2023-02-07 11:13:33 數學教學計劃 我要投稿

高二數學的教學計劃11篇

  光陰迅速,一眨眼就過去了,又將迎來新的工作,新的挑戰,讓我們一起來學習寫計劃吧。相信大家又在為寫計劃犯愁了吧?以下是小編為大家收集的高二數學的教學計劃,希望對大家有所幫助。

高二數學的教學計劃11篇

高二數學的教學計劃1

  (1)知識目標:

  1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.

  (2)能力目標:

  1.進一步培養學生用解析法研究幾何問題的能力;

  2.使學生加深對數形結合思想和待定系數法的理解;

  3.增強學生用數學的意識.

  (3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.

  2.教學重點.難點

  (1)教學重點:圓的標準方程的求法及其應用.

  (2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關的實際問題.

  3.教學過程

  (一)創設情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

  [引導] 畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的直徑AB所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學生活動] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設M(x,y)是圓上任意一點,根據定義點M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}

  由兩點間的距離公式,點M適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  I.直接應用(內化新知)

  問題三:1.寫出下列各圓的方程(課本P77練習1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經過點 ,圓心在點 .

  2.根據圓的方程寫出圓心和半徑

  (1) ; (2) .

  II.靈活應用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學生活動]探究方法

  [教師預設]

  方法一:待定系數法(利用幾何關系求斜率-垂直)

  方法二:待定系數法(利用代數關系求斜率-聯立方程)

  方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關系式)

  3.你能歸納出具有一般性的結論嗎?

  已知圓的方程是 ,經過圓上一點 的切線的方程是: .

  III.實際應用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創設實際問題情境]

  (四)反饋訓練(形成方法)

  問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點A(-4,-5),B(6,-1),求以AB為直徑的'圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

  (五)小結反思(拓展引申)

  1.課堂小結:

  (1)圓心為C(a,b),半徑為r 的圓的標準方程為:

  當圓心在原點時,圓的標準方程為:

  (2) 求圓的方程的方法:①找出圓心和半徑;②待定系數法

  (3) 已知圓的方程是 ,經過圓上一點 的切線的方程是:

  (4) 求解應用問題的一般方法

  2.分層作業:(A)鞏固型作業:課本P81-82:(習題7.6)1.2.4

  (B)思維拓展型作業:

  試推導過圓 上一點 的切線方程.

  3.激發新疑:

  問題七:1.把圓的標準方程展開后是什么形式?

  2.方程: 的曲線是什么圖形?

  教學設計說明

  圓是學生比較熟悉的曲線,初中平面幾何對圓的基本性質作了比較系統的研究,因此這節課的重點確定為用解析法研究圓的標準方程及其簡單應用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎上,用實際問題引導學生探究獲得圓的標準方程,然后,利用圓的標準方程由淺入深的解決問題,并通過圓的方程在實際問題中的應用,增強學生用數學的意識。另外,為了培養學生的理性思維,我分別在引例和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,能力與知識的形成相伴而行,這樣的設計不但突出了重點,更使難點的突破水到渠成.

  本節課的設計了五個環節,以問題為紐帶,以探究活動為載體,使學生在問題的指引下、教師的指導下把探究活動層層展開、步步深入,充分體現以教師為主導,以學生為主體的指導思想。應用啟發式的教學方法把學生學習知識的過程轉變為學生觀察問題、發現問題、分析問題、解決問題的過程,在解決問題的同時鍛煉了思維.提高了能力。

高二數學的教學計劃2

  本章是高考命題的主體內容之一,應切實進行全面、深入地復習,并在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善于使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.

  ②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;

  ③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整

  體思想求解.

  (4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.

  一、基本概念:

  1、 數列的'定義及表示方法:

  2、 數列的項與項數:

  3、 有窮數列與無窮數列:

  4、 遞增(減)、擺動、循環數列:

  5、 數列的通項公式an:

  6、 數列的前n項和公式Sn:

  7、 等差數列、公差d、等差數列的結構:

  8、 等比數列、公比q、等比數列的結構:

  二、基本公式:

  9、一般數列的通項an與前n項和Sn的關系:an=

  10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d0時,an是關于n的一次式;當d=0時,an是一個常數。

  11、等差數列的前n項和公式:Sn= Sn= Sn=

  當d0時,Sn是關于n的二次式且常數項為0;當d=0時(a10),Sn=na1是關于n的正比例式。

  12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k

  (其中a1為首項、ak為已知的第k項,an0)

  13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關于n的正比例式);

  當q1時,Sn= Sn=

  三、有關等差、等比數列的結論

  14、等差數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等差數列。

  15、等差數列中,若m+n=p+q,則

  16、等比數列中,若m+n=p+q,則

  17、等比數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等比數列。

  18、兩個等差數列與的和差的數列、仍為等差數列。

  19、兩個等比數列與的積、商、倒數組成的數列

  、 、 仍為等比數列。

  20、等差數列的任意等距離的項構成的數列仍為等差數列。

  21、等比數列的任意等距離的項構成的數列仍為等比數列。

  22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d

  23、三個數成等比的設法:a/q,a,aq;

  四個數成等比的錯誤設法:a/q3,a/q,aq,aq3

  24、為等差數列,則 (c0)是等比數列。

  25、(bn0)是等比數列,則 (c0且c 1) 是等差數列。

  四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。

  26、分組法求數列的和:如an=2n+3n

  27、錯位相減法求和:如an=(2n-1)2n

  28、裂項法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求數列的最大、最小項的方法:

  ① an+1-an= 如an= -2n2+29n-3

  ② an=f(n) 研究函數f(n)的增減性

  31、在等差數列 中,有關Sn 的最值問題常用鄰項變號法求解:

  (1)當 0時,滿足 的項數m使得 取最大值.

  (2)當 0時,滿足 的項數m使得 取最小值。

  在解含絕對值的數列最值問題時,注意轉化思想的應用。

  以上就是高二數學學習:高二數學數列的所有內容,希望對大家有所幫助!

高二數學的教學計劃3

  一、學生基本情況

  261班共有學生75人,268班共有學生72人。268班學習數學的氣氛較濃,但由于高一函數部分基礎特別差,對高二乃至整個高中的數學學習有很大的影響,數學成績尖子生多或少,但若能雜實復習好函數部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養他們的學習興趣,

  二、教學要求

  (一)情意目標

  (1)經過分析問題的方法的教學、經過不等式的一題多解、多題一解、不等式的一題多證,培養學生的學習的興趣。

  (2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養學數學用數學的意識。

  (3)在探究不等式的性質、圓錐曲線的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。

  (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

  (5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。

  (6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程的幻妙多姿

  (二)能力要求

  1、培養學生記憶能力。

  (1)在對不等式的性質、平均不等式及思維方法與邏輯模式的學習中,進一步培養記憶能力。做到記憶準確、持久,用時再現得迅速、正確。

  (2)經過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。

  (3)經過揭示解析幾何有關概念、公式和圖形直觀值見的對應關系,培養記憶能力。

  2、培養學生的運算能力。

  (1)經過解不等式及不等式組的訓練,培養學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。

  (3)經過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)經過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數形結合,另辟蹊徑,提高學生運算能力。

  3、培養學生的思維能力。

  (1)經過含參不等式的求解,培養學生思維的周密性及思維的邏輯性。

  (2)經過解析幾何與不等式的一題多解、多題一解、經過不等式的一題多證,培養思維的靈活性和敏捷性,發展發散思維能力。

  (3)經過不等式引伸、推廣,培養學生的創造性思維。

  (4)加強知識的橫向聯系,培養學生的數形結合的能力。

  (5)經過解析幾何的概念教學,培養學生的正向思維與逆向思維的能力。

  (6)經過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。

  4、培養學生的觀察能力。

  (1)在比較鑒別中,提高觀察的準確性和完整性。

  (2)經過對個性特征的分析研究,提高觀察的深刻性。

  (三)知識要求

  1、掌握不等式的概念、性質及證明不等式的方法,不等式的解法;

  2、經過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關系,掌握簡單線性規劃問題,掌握曲線方程、圓的`概念。

  3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質。

  三、教材簡要分析

  1、不等式的主要內容是:不等式性質、不等式證明、不等式解法。不等式性質是基礎,不等式證明是在其基礎上進行的;不等式的解法是在這一基礎上、依據不等式的性及同解變形來完成的。不等式在整個高中數學中是一個重要的工具,是培養運算能力、邏輯思維能力的強有力載體。

  2、直線是最簡單的幾圖形,是學習圓錐曲線、導數和微分等知識的的基礎。,是直線方程的一個直接應用。主要內容有:直線方程的幾種形式,線性規劃的初步知識,兩直線的位置關系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數形結合解析幾何相互為用思想的載體。

  3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質,以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并經過分析標準方程研究它們的性質。

  四、重點與難點

  (一)重點

  1、不等式的證明、解法。

  2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關系,圓的方程。

  3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質。

  (二)難點

  1、含絕對值不等式的解法,不等式的證明。

  2、到角公式,點到直線距離公式的推導,簡單線性規劃的問題的解法。

  3、用坐標法研究幾何問題,求曲線方程的一般方法。

  五、教學措施

  1、教學中要傳授知識與培育能力相結合,充分調動學生學習的主動性,培育學生的概括能力,是學生掌握數學基本方法、基本技能。

  2、持之以恒與高三聯系,切實面向高考,以五大數學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。

  3、加強教育教學研究,持之以恒學生主體性原則,持之以恒循序漸進原則,持之以恒啟發性原則。研究并采用以發現式教學模式為主的教學方法,全面提高教學質量。

  4、積極參加與組織集體備課,共同研究,努力提高授課質量

  5、持之以恒向同行聽課,取人所長,補己之短。相互研究,共同進步。

  6、持之以恒學法研討,加強個別輔導(差生與優生),提高全體學生的整體數學水平,培育尖子學生。 7、加強數學研究課的教學研究指導,培養學識的動手能力。

  六、課時安排

  本學期共81課時

  1、不等式18課時

  2、直線與圓的方程25課時

  3、圓錐曲線20課時

  4、研究課18課時

高二數學的教學計劃4

  一、教學目標

  (一)知識與技能

  1.通過探究學習使學生掌握幾何概型的基本特征,明確幾何概型與古典概型的區別.

  2.理解并掌握幾何概型的概念.

  3.掌握幾何概型的概率公式,會進行簡單的幾何概率計算.

  (二)過程與方法

  1.讓學生通過對隨機試驗的觀察分析,提煉它們共同的本質的東西,從而親歷幾何概型的建構過程,培養學生觀察、類比、聯想等邏輯推理能力.

  2.通過實際應用,培養學生把實際問題抽象成數學問題的能力,感知用圖形解決概率問題的方法.

  (三)情感、態度、價值觀

  1.讓學生了解幾何概型的意義,加強與現實生活的聯系,以科學的.態度評價一些隨機現象.

  2.通過對幾何概型的教學,幫助學生樹立科學的世界觀和辯證的思想,養成合作交流的習慣,初步形成建立數學模型的能力.

  二、教學重點與難點

  教學重點:了解幾何概型的基本特點及進行簡單的幾何概率計算.

  教學難點:如何在實際背景中找出幾何區域及如何確定該區域的“測度”.

  三、教學方法與教學手段

  教學方法:“自主、合作、探究”教學法

  教學手段: 電子白板、實物投影、多媒體課件輔助

  四、教學過程

  五、板書:幾何概型的概念:設D是一個可度量的區域(例如線段、平面圖形、立體圖形等).每個基本事件可以視為從區域D內隨機地取一點,區域D內的每一點被取到的機會都一樣;隨機事件A的發生可以視為恰好取到區域D內的某個指定區域d中的點。

  這時,事件A發生的概率與d的測度(長度、面積、體積等)成正比。

  我們把滿足這樣條件的概率模型稱幾何概型.

  板書:幾何概型的概率計算公式:

高二數學的教學計劃5

  一、學情分析

  11電子(1),現共50人,均為男生,在去年的一年中的學習表現中,有些同學在課堂上也能積極思考,積極發言,課后也能主動地完成課外的知識積累,有兩位同學參加縣里數學競賽都榮獲二等獎。但還有好多的同學學習目標仍不明確,在學校生活就是混日子,上課不認真聽課,作業不獨立完成,課后再也沒時間放在學習上,因此,這一些同學的成績就可想而知了。

  二、教材分析

  本學期根據教學大綱的編排,主要內容包括第八章直線和圓的方程,第九章立體幾何和第十章概率與統計初步。具體內容:第八章有坐標系中的基本公式,直線的方程,圓的方程,直線與圓的位置關系,本章內容主要就是用代數的知識闡述幾何圖形的問題。第九章的內容分空間中平面的基本性質,空間中的平行關系,空間中的垂直和角,多面體和旋轉體。教材首先讓學生從直觀上認識空間幾何體和軌跡,然后給出了平面的三條基本性質,從而把平面上的平行關系推廣到空間。學習立體幾何除了培養學生的空間想象能力外,還培養學生邏輯思維能力。第十章有計數的兩個原理,概率初步,統計初步及隨機抽樣的三種基本方法。本章教學中要激發并培養學生的學習興趣地,增強學生的社會實踐能力,培養學生解決實際問題的能力。

  三、教學目標

  解析幾何:掌握平面直角坐標系內兩點之間的距離公式和中點公式;理解直線的方程和圓的方程的含義,方程求兩曲線的交點;理解直線的傾斜角和斜率,會根據已知條件,求直線的斜率和傾斜角;掌握直線的點斜式方程和斜截式方程;理解直線在y軸上的截距理解直線與二元一次方程的關系,掌握直線的一般式言行中,了角直線的方向向量和法向量;理解兩直線平等行與垂直的條件,會求點到直線的距離;掌握圓的標準方程和一般方程,理解直線與圓的位置關系;能利用直線和圓的方程解決簡單的問題。

  立體幾何:能正確地畫出有關被單圖形的示意圖,能由空間圖形的示意圖想象出空間圖形會用斜二側畫法畫水平放置的正三角形、正方形、正六邊形等平面圖形的直觀圖和正方體、長方體等立體圖形的直觀圖;理解空間點、直線、平面之間的各種位置關系;掌握平面的基本性質,空間直線與直線、直線與平面、平面與平面的平行與垂直的性質與判定;理解空間中的角;掌握簡單多面體的有關概念、結構特征與性質;掌握直棱柱、正棱錐、圓柱和圓錐的側面積及表面積計算公式。

  概率與統計初步:掌握分類計數和分步計數原理,會用這兩個原理解決一些簡單問題;了解隨機現象、隨機試驗的`概念;理解古典概率的性質,會用古典概率解決一些簡單的實際問題。理解概率的統計定義;結合具體的實際問題情景,了解隨機抽樣的必要性和重要性。學會用簡單隨機抽樣方法從總體中抽取樣本;了解分層抽樣和系統抽樣方法;會計算樣本方差和標準差;能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特征,會用樣本估計總體的思想,會用樣本的基本數字特征估計總體的基本數字特征;會用樣本的頻率分布估計總體分布。

  四、教學措施

  從學生的實際情況入手,從其周邊的生活入手,分解新知識,降低接受知識的難度,增強學生學習數學的信心,組建學習小組,以傳幫帶的形式實行共同進步

  五、教學進度

  周次

  時間

  單元

  教學內容

  課時數

  1

  數軸上的距離公式與中點公式

  平面直角坐標系中的距離和中點公式

  直線與方程

  1

  2

  1

  2

  直線的傾斜角和斜率

  直線方程的幾種形式

  練習課

  直線與直線的位置關系

  1

  2

  1

  1

  3

  直線與直線的位置關系

  點到直線的距離

  單元復習及測試

  1

  1

  2

  4

  圓的標準方程

  圓的一般方程

  直線與圓的位置關系

  直線與圓的方程的應用

  1

  1

  2

  1

  5

  國慶例假

  6

  單元復習

  立體圖形及其表示方法

  平面的基本性質

  2

  1

  1

  7

  空間中的平行直線

  異面直線

  直線與平面平行

  平面與平面的平行關系

  單元復習

  1

  1

  1

  1

  1

  8

  直線與平面垂直

  直線與平面所成的角

  平面與平面所成的角

  平面與平面垂直

  單元復習

  1

  1

  1

  1

  1

  9

  棱柱

  棱錐

  直棱柱和正棱錐的側面積

  圓柱、圓錐

  1

  1

  1

  2

  10

  球

  多面體瑟旋轉體的體積

  復習

  1

  2

  2

  11

  期中考試

  12

  期中試卷分析

  計數原理

  概率初步

  2

  2

  1

  13

  概率初步

  總體、樣本和抽樣方法

  頻率分布直方圖

  2

  2

  1

  14

  用樣本估計總體

  一元線性回歸

  小結與復習

  2

  2

  1

  15

  單元測試

  2

  16

  復習

  17

  復習

  18

  復習

  19

  復習

  20

  復習

  21

  期末考試

高二數學的教學計劃6

  高二5班共有學生73人,8班共有學生70人。兩個班級都是高二理科班的三類班,大部分學生基礎不扎實,學習興趣不高,甚至很多學生存在怕數學科的心理。但他們還是存在一顆想學好數學的心,也想融入變化多端的數學世界,更想在每次考試中獨領風騷,鑒于此,對他們正確引導,教學中適當調整難度,起點放低點,步子邁小點,還是會有好成績的。

  一、教學計劃

  1.加強自身學習。

  ①加強課本的研讀。教科書是一切教學的出發點,同時也是考試的歸屬地,任何一個數學知識點都會從教科書中找到類型題或者相似題或者其影子。對教科書能否吃透,專研到位,直接決定著教學知識的全面性和系統性。也就決定著研讀教材的必要性。

  ②他山之石,可以攻玉。一個人由于生活的環境,面對的對象,自身知識局限等多方面原因,視野和出發點都有局限,思考問題和解決問題的廣度和深度都有局限,因此,多閱讀教學參考類的書,吸取他人的經驗,借鑒他人所長彌補自己所短,對于增強教學的針對性和精彩性大有裨益。

  ③強化課改意識。新課改已經全面鋪開,新課改的精神和思想都獨具時代性,前瞻性,科學性,因此,加強新課改知識的學習,領悟新課改思想,增強新課改意識,是時代的需要,是發展的需要。因此,積極參與新課改培訓,領會新課改精髓,并應用于實踐中是當前必須要做的,只有這樣,才能使自己的知識新陳代謝。

  ④認真參與組內備課。珍惜每周一次的集體備課,充分利用好這次集體備課機會,從同行們那里學習到自己缺乏或者不擅長的東西,并積極實施好組內的各項安排,落實好課時要求。

  ⑤增強聽課意識。按照學校的要求,積極參加新課改年級的課堂聽課活動,聽取授課教師的點評,發現亮點,記錄亮點,積累亮點,點亮亮點。

  2.抓好課堂教學主戰場,激發師生學習數學熱情。

  ①加強新課情景創設,激發學生學習熱情。每一節新課的開展,都有其現實意義,有其價值所在,有其趣味性,充分挖掘好這方面知識,可起到一個良好的開端作用。

  ②精選精講例題。對于學生自己學得會的,不講,對于學生討論后可以解決的,給以適當點撥,對于學生在老師引導下完成的,要慢慢講,細細的.講,爭取每個學生都聽得進,聽得懂,學得會。對于超越學生承受能力的,一概不講。

  ③精心布置課后作業。課后作業是課堂教學的反饋,作業質量的高低,一定層面可以反映教學效果的高低,因此,作業的布置需要科學化,分層化,多樣化,且知識點具有全面性。

  3.做好課后輔導工作。

  ①利用晚自習,充分給以每個學生耐心、細心、全面的輔導。讓學生積累的問題得到徹底解決。

  ②利用自習課時間,尋找需要幫助的學生進行輔導,公式背不出來的,抓背公式,不交作業的,責令補交作業。

  4.做好作業、考試反饋工作。

  學生認真完成作業和考卷,老師進行批改,總結共性問題,發現個性問題,有針對性的給以反饋,及時消除困惑。

  5.規范作答,養成良好習慣。

  現在學生的數學答卷,條理不清晰,邏輯混亂,因果顛倒,這是基礎不扎實的表現,更是一種思維的缺陷。因此,現階段抓好規范答題,有助于學生良好數學思維的養成,避免將來高考失分和日后生活的凌亂。

  6.培養學生的數學興趣,普及數學價值規律的應用。

  興趣是的老師。數學難,數學煩,難在何處,煩在何方?找到原因,對癥下藥,通過課堂,移植中外數學趣味知識,讓學生體會到數學的價值所在,通過多媒體,降低數學思維難度等等都是提高學生興趣

  二、教學內容

  本學期,按照教育局教研室的要求,教學任務比較繁重。選修1-1,第三章《導數》,按照教研室的計劃,應該安排在春節前結束,鑒于臨近期末考試,這一章沒學,這樣本學期教學內容共有以下幾部分:選修1-1《導數》,選修1-2共四章《統計案例》、《推理與證明》、《數系的擴充與復數的引入》、《框圖》,復習必修1

  三、教學策略

  按照xx年山東省高考數學(文科)考綱的要求,及時調整教學計劃,認真抓好學生學習的落實,努力使學生的學成為有效勞動。精心備課,精心輔導,重點抓住目標生不放松,努力使目標生的數學成績成為有效,積極溝通交流,提高自己的授課水平,同時,認真研究《數學學科課程標準》,學習新課程,應用新課程。

  四、具體措施

  本學期,我主要從以下幾個方面抓好教學:

  1、注重學案導學,編好用好學案。注重研究老師如何講為注重研究學生如何學。

  2、嘗試分層次作業,尤其是加餐作業,提高優等生的學習成績。

  3、抓好學生作業的落實,不定期檢查學生的集錦本、練習本。

  4、組織好單元過關,搞好試卷講評。

  5、積極做好目標學生的思想交流,情感溝通。

高二數學的教學計劃7

  一、學情分析

  高二某班共有學生73人, 8班共有學生70人。兩個班級都是高二理科班的三類班,大部分學生基礎不扎實,學習興趣不高,甚至很多學生存在怕數學科的心理。但他們還是存在一顆想學好數學的心,也想融入變化多端的數學世界,更想在每次考試中獨領風騷,鑒于此,對他們正確引導,教學中適當調整難度,起點放低點,步子邁小點,還是會有好成績的。

  二、教學計劃

  1、加強自身學習。

  ①加強課本的研讀。教科書是一切教學的出發點,同時也是考試的歸屬地,任何一個數學知識點都會從教科書中找到類型題或者相似題或者其影子。對教科書能否吃透,專研到位,直接決定著教學知識的全面性和系統性。也就決定著研讀教材的必要性。

  ②他山之石,可以攻玉。一個人由于生活的環境,面對的對象,自身知識局限等多方面原因,視野和出發點都有局限,思考問題和解決問題的廣度和深度都有局限,因此,多閱讀教學參考類的書,吸取他人的經驗,借鑒他人所長彌補自己所短,對于增強教學的針對性和精彩性大有裨益。

  ③強化課改意識。新課改已經全面鋪開,新課改的精神和思想都獨具時代性,前瞻性,科學性,因此,加強新課改知識的學習,領悟新課改思想,增強新課改意識,是時代的需要,是發展的需要。因此,積極參與新課改培訓,領會新課改精髓,并應用于實踐中是當前必須要做的,只有這樣,才能使自己的知識新陳代謝。

  ④認真參與組內備課。珍惜每周一次的集體備課,充分利用好這次集體備課機會,從同行們那里學習到自己缺乏或者不擅長的東西,并積極實施好組內的各項安排,落實好課時要求。

  ⑤增強聽課意識。按照學校的要求,積極參加新課改年級的課堂聽課活動,聽取授課教師的.點評,發現亮點,記錄亮點,積累亮點,點亮亮點。

  2、抓好課堂教學主戰場,激發師生學習數學熱情。

  ①加強新課情景創設,激發學生學習熱情。每一節新課的開展,都有其現實意義,有其價值所在,有其趣味性,充分挖掘好這方面知識,可起到一個良好的開端作用。

  ②精選精講例題。對于學生自己學得會的,不講,對于學生討論后可以解決的,給以適當點撥,對于學生在教師引導下完成的,要慢慢講,細細的講,爭取每個學生都聽得進,聽得懂,學得會。對于超越學生承受能力的,一概不講。

  ③精心布置課后作業。課后作業是課堂教學的反饋,作業質量的高低,一定層面可以反映教學效果的高低,因此,作業的布置需要科學化,分層化,多樣化,且知識點具有全面性。

  3、做好課后輔導工作。

  ①利用晚自習,充分給以每個學生耐心、細心、全面的輔導。讓學生積累的問題得到徹底解決。

  ②利用自習課時間,尋找需要幫助的學生進行輔導,公式背不出來的,抓背公式,不交作業的,責令補交作業。

  4、做好作業、考試反饋工作。

  學生認真完成作業和考卷,教師進行批改,總結共性問題,發現個性問題,有針對性的給以反饋,及時消除困惑。

  5、規范作答,養成良好習慣。

  現在學生的數學答卷,條理不清晰,邏輯混亂,因果顛倒,這是基礎不扎實的表現,更是一種思維的缺陷。因此,現階段抓好規范答題,有助于學生良好數學思維的養成,避免將來高考失分和日后生活的凌亂。

  6、提高學生的數學興趣,普及數學價值規律的應用。

  興趣是最好的教師。數學難,數學煩,難在何處,煩在何方?找到原因,對癥下藥,通過課堂,移植中外數學趣味知識,讓學生體會到數學的價值所在,通過多媒體,降低數學思維難度等等都是提高學生興趣的好方法。

  以上是這個學期的教學工作計劃,在實施過程中,將及時作出調整,以期達到教與學的最佳效果。

高二數學的教學計劃8

  根據本學期進度計劃,在教參的課時分配的基礎上,除去復習所用的課時,第九周上結束7.5曲線和方程后進行期中考試,中期考試后從§7.6圓的方程上起,到第十六周結束新課,第十七、十八周上一點下學期的'內容,十九、二十周進行期末復習與考試。

  教學中估計困難不少:學生人多,數學基礎的差異程度加大,為教學的因材施教增加了難度。與其他學校相比, 數學教學 時間相對較少,練習與講評難以做到充分。

  為了能順利完成今年的教學任務,準備采取以下教學措施。

  一、認真落實,搞好集體備課。

  每周至少進行一次集體備課。每次備課都要用一定的時間交流一下前一段的教學情況,進度、學生掌握情況等。通過全組的團結合作,應該可以順利完成教學任務。

  二、詳細計劃,保證練習質量。

  老師要安排一定量的習題并進行及時進行檢查。存在的普遍性問題最好安排時間講評。

  三、抓好第二課堂,穩定數學優生,培養數學能力興趣。

  平常意義上的第二課堂輔導學生,主要是以興趣班的形式,以復習鞏固課堂教學的同步內容為主,一般只選用常規題為例題和練習,難度低于高考接近高考,用專題講授為主要形式開展輔導工作。

  四、加強輔導工作。

  對已經出現數學學習困難的學生,教師的下班輔導十分重要,所以每位老師必須重視搞好輔導工作。

高二數學的教學計劃9

  一、指導思想:

  在學校教學工作意見指導下,在學部工作的框架下,認真落實學校對備課組工作的各項要求,嚴格執行學校的各項教育教學制度和要求,強化數學教學研究,提高全組老師的教學、教研水平,明確任務,團結協作,圓滿完成教學教研任務。具體目標如下。

  1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二.學生基本情況

  高二傾理學生共有166人,學生學習數學的氣氛不濃、基礎很差。由于學生對學過的知識內容不及時復習,致使對高二的數學學習有很大的影響,高一數學成績充分反映沒有尖子生,成績特差的學生也有不少,有一批思維相當靈活的學生,但學習不夠刻苦,學習成績一般,但有較大的潛力,以后好好的引導,進一步培養他們的學習興趣,從而帶動全班同學的學習熱情,提高學生的數學成績。

  三、教法分析:

  1.選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的`概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。

  2.通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

  3.在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

  四、教學措施:

  1、認真落實,搞好集體備課。每周至少進行一次集體備課。各組老師根據自已承擔的任務,提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。

  2、詳細計劃,保證練習質量。教學中用配備資料《創新設計》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容滾動式編兩份練習試卷,做后老師要收齊批改,存在的普遍性問題要安排時間講評。

  3、抓好第二課堂,穩定數學優生,培養數學能力興趣。競賽班的教學進度要加快,教學難度要有所降低,各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。

  4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要盡快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。

  五、教學進度表:(略)

  高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高二數學上學期教學計劃,希望大家喜歡。

高二數學的教學計劃10

  一、指導思想:

  為進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下:

  1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6、具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、教材特點:

  我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:

  1、親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。

  2、問題性:以恰時恰點的問題引導數學活動,提高問題意識,孕育創新精神。

  3、科學性與思想性:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。

  4、時代性與應用性:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。

  三、教法分析:

  1、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的.思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到提高其興趣的目的。

  2、通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

  3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

  四、學情分析:

  1、基本情況:高二(1)班共50人,男生36人,女生14人;本班相對而言,數學尖子約13人,中上等生約23人,中等生約6人,中下生約6人,后進生約2人。

  高二(2)班共49人,男生37人,女生12人;本班相對而言,數學尖子約0人,中上等生約7人,中等生約8人,中下生約22人,后進生約12人。

  2、(1)班學生學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,提高其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于提高學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。

  五、教學要求:

  1、了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數學發現中的作用;了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理;了解合情推理和演繹推理之間的聯系和差異。

  2、了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點;了解間接證明的一種基本方法──反證法;了解反證法的思考過程、特點。

  3、(理)了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。

  4、理解復數相等的充要條件;了解復數的代數表示法及其幾何意義;會進行復數代數形式的四則運算;了解復數代數形式的加、減運算的幾何意義。

  5、(理)理解分類加法計數原理和分類乘法計數原理;會用分類加法計數原理或分步乘法計數原理分析和解決一些簡單的實際問題;理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,能解決簡單的實際問題;能用計數原理證明二項式定理,會用二項式定理解決與二項展開式有關的簡單問題。

  6、(理)理解取有限個值的離散型隨機變量及其分布列的概念,了解分布列對于刻畫隨機現象的重要性;理解超幾何分布及其導出過程,并能進行簡單的應用;了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,并能解決一些簡單的實際問題;理解取有限個值的離散型隨機變量均值、方差的概念,能計算簡單離散型隨機變量的均值、方差,并能解決一些實際問題;利用實際問題的直方圖,了解正態分布曲線的特點及曲線所表示的意義。

  7、了解下列一些常見的統計方法,并能應用這些方法解決一些實際問題:了解獨立性檢驗(只要求22列聯表)的基本思想、方法及其簡單應用;了解假設檢驗的基本思想、方法及其簡單應用;了解聚類分析的基本思想、方法及其簡單應用;了解回歸的基本思想、方法及其簡單應用。

  9、了解程序框圖;了解工序流程圖(即統籌圖);能繪制簡單實際問題的流程圖,了解流程圖在解決實際問題中的作用;了解結構圖;會運用結構圖梳理已學過的知識、整理收集到的資料信息。

  8、所有考生都學習選修4-4坐標系與參數方程,理科考生還需學習選修4-5不等式選講這部分專題內容。

  六、教學措施:

  1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

  2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

  3、加強提高學生的邏輯思維能力就解決實際問題的能力,以及提高提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。

  4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

  5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。

  6、重視數學應用意識及應用能力的提高。

高二數學的教學計劃11

  一、教材分析。

  1、教材地位、作用。

  本節課的內容選自《普通高中課程標準實驗教科書數學必修3(A)版》第三章中的第3.2.1節古典概型。它安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。

  古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。

  2、學情分析。

  學生基礎一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節上不完備,反映在解題中就是思維不慎密,過程不完整。

  二、教學目標。

  1、知識與技能目標。

  (1)理解等可能事件的概念及概率計算公式。

  (2)能夠準確計算等可能事件的概率。

  2、過程與方法。

  根據本節課的知識特點和學生的認知水平,教學中采用探究式和啟發式教學法,通過生活中常見的實際問題引入課題,層層設問,經過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。

  3、情感態度與價值觀。

  概率問題與實際生活聯系緊密,學生通過概率知識的學習,可以更好的理解隨機現象的本質,掌握隨機現象的規律,科學地分析、解釋生活中的一些現象,初步形成實事求是的科學態度和鍥而不舍的求學精神。

  三、重點、難點。

  1、重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。

  2、難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。

  四、教學過程。

  1、創設情境,提出問題。

  師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?

  通過這個同學們經常會遇到的問題,引導學生合作探索新知識,符合“學生為主體,老師為主導”的現代教育觀點,也符合學生的.認知規律。隨著新問題的提出,激發了學生的求知欲望,使課堂的有效思維增加。

  2、抽象思維。形成概念、

  師:考察試驗一“拋擲一枚質地均勻的骰子”,有幾種不同的結果,結果分別有哪些?

  生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。

  師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。

  師:考察試驗二“拋擲一枚質地均勻的硬幣”有哪些基本事件?

  生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。

  師:那基本事件有什么特點呢?

  問題:

  (1)在“拋擲一枚質地均勻的骰子”試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎?

  (2)事件“出現偶數點”包含了哪幾個基本事件?

  由如上問題,分別得到基本事件如下的兩個特點:

  (1)任何兩個基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (讓學生交流討論,教師再加以總結、概括)

  讓學生歸納與總結,鼓勵學生用自己的語言表述,從而提高學生的表達能力與數學語言的組織能力

  例1:從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?

  師:為了得到基本事件,我們可以按照某種順序,把所有可能的結果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結果。

  解:所求的基本事件共有6個:

  ____________________________________________________________________________________。

  由于學生沒有學習排列組合知識,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數這一難點,同時滲透了數形結合及分類討論的數學思想。

  師:你能發現前面兩個數學試驗和例1有哪些共同特點嗎?(先讓學生交流討論,然后教師抽學生回答,并在學生回答的基礎上再進行補充)

  試驗一中所有可能出現的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現的可能性相等,都是;

  試驗二中所有可能出現的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現的可能性相等,都是;

  例1中所有可能出現的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現的可能性相等,都是;

  經概括總結后得到:

  ①試驗中所有可能出現的基本事件只有有限個;

  ②每個基本事件出現的可能性相等。

  我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。

  學生在合作交流的探究氛圍中思考、質疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納問題的能力。

  3、概念深化,加深理解。

  試驗“向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的”。你認為這是古典概型嗎?為什么?

  生:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。

  試驗“某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環’。你認為這是古典概型嗎?為什么?

  生:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環……命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。

  這兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學難點,培養學生思維的深刻性與批判性。

  4、觀察比較,推導公式。

  師:在古典概型下,隨機事件出現的概率如何計算?(讓學生討論、思考交流)

  生:試驗二中,出現各個點的概率相等,即

  P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)

  由概率的加法公式,得

  P(“1點”)+P(“2點”)+P(“3點”)+P(“4點”)+P(“5點”)+P(“6點”)=P(必然事件)=1

  因此P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=

  進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,

  P(“出現偶數點”)=P(“2點”)+P(“4點”)+P(“6點”)=++==

  P(“出現偶數點”)=?=

  師:根據上述試驗,你能概括總結出,古典概型計算任何事件的概率計算公式嗎?

  生:_________________________________________________________________。

  學生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數學知識形成的發生與發展的過程,體現具體到抽象、從特殊到一般的數學思想,同時讓學生感受數學化歸思想的優越性和這一做法的合理性。

  師:我們在使用古典概型的概率公式時,應該還要注意些什么呢?(先讓學生自由說,教師再加以歸納)在使用古典概型的概率公式時,應該注意:

  ①要判斷該概率模型是不是古典概型;

  ②要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

  深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

  5、應用與提高。

  例2:單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考查的內容,他可以選擇惟一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

  解:這是一個古典概型,因為試驗的可能結果只有4個:選擇A、選擇B、選擇C、選擇D,從而由古典概型的概率計算公式得:

  探究:在標準化考試中既有單選題又有不定項選擇題,不定項選擇題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?

  解:這是一個古典概型,因為試驗的可能結果只有15個:選擇A、選擇B、選擇C、選擇D,選擇AB、選擇AC、選擇AD、選擇BC、選擇BD、選擇CD、選擇ABC、選擇ABD、選擇ACD、選擇BCD、選擇ABCD,從而由古典概型的概率計算公式得:

  P(“答對”)=1/15

  解決了課前提出的思考題,讓學生明確解決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

  例3:同時擲兩個骰子,計算:

  (1)一共有多少種不同的結果?

  (2)其中向上的點數之和是5的結果有多少種?

  (3)向上的點數之和是5的概率是多少?

  (教師先讓學生獨立完成,再抽兩位不同答案的學生回答)

  學生1:

  ①所有可能的結果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種。

  ②向上的點數之和為5的結果有2個,它們是(1,4)(2,3)。

  ③向上點數之和為5的結果(記為事件A)有2種,因此,由古典概型的概率計算公式可得

  學生2:

  ①擲一個骰子的結果有6種,我們把兩個骰子標上記號1,2以便區分,由于1號骰子的每一個結果都可與2號骰子的任意一個結果配對,組成同時擲兩個骰子的一個結果,我們可以用列表法得到(如圖),其中第一個數表示1號骰子的結果,第二個數表示2號骰子的結果。

  由表中可知同時擲兩個骰子的結果共有36種。

  ②在上面的所有結果中,向上的點數之和為5的結果有4種:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36種結果是等可能的,其中向上點數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得

  師:上面同一個問題為什么會有兩種不同的答案呢?(先讓學生交流討論,教師再抽學生回答)

  生:答案1是錯的,原因是其中構造的21個基本事件不是等可能發生的,因此就不能用古典概型的概率公式求解。

  師:我們今后用古典概型的概率公式求解時,特別要驗證“每個基本事件出現是等可能的”這個條件,否則計算出的概率將是錯誤的。

  本題通過學生的觀察比較,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸使學生養成自主探究能力。同時培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣。

  6、知識梳理,課堂小結。

  (1)本節課你學習到了哪些知識?

  (2)本節課滲透了哪些數學思想方法?

  7、作業布置。

  (1)閱讀本節教材內容

  (2)必做題課本130頁練習第1,2題,課本134頁習題3。2A組第4題

  (3)選做題課本134頁習題B組第1題

  8、教學反思。

  本節課的教學設計以“問題串”的方式呈現為主,教學過程中師生共同合作,體驗古典概型的特點,公式的生成、發現,把“數學發現”的權力還給學生,讓學生感受知識形成的過程,獲得數學發現的體驗。將學習的主動權較完整地交還給學生。

  本節課始終本著在教師的引導下,學生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學效果。構建利于學生學習的有效教學情境,較好地拓展師生的活動空間,符合新課程的理念。

【高二數學的教學計劃】相關文章:

高二的數學教學計劃12-10

高二數學的教學計劃精選03-24

高二的數學教學計劃03-31

高二數學教學計劃12-12

高二數學教學計劃08-29

高二數學的教學計劃01-26

高二數學的教學計劃11-09

高二數學教學計劃05-10

高二的數學教學計劃06-26

數學高二教學計劃01-24

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
中文字幕亚洲第一 | 亚洲中文字幕在线观看 | 亚洲日韩首页中文字幕在线 | 亚洲bt欧美bt中文字幕 | 天堂mv手机在线mv观看午夜版 | 中文热免费在线视频 |