高中數學說課稿

時間:2023-01-07 16:22:10 數學說課稿 我要投稿

高中數學說課稿【精】

  作為一位不辭辛勞的人民教師,就有可能用到說課稿,借助說課稿我們可以快速提升自己的教學能力。那么應當如何寫說課稿呢?以下是小編為大家整理的高中數學說課稿,希望能夠幫助到大家。

高中數學說課稿【精】

高中數學說課稿1

  一、教材分析

  教材的地位和作用:本節課教學內容是高一(下)第四章4。6節第一課時(兩角和與差的余弦)。本節內容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數式的化簡、求值等三角問題的解決有著重要的支撐作用。本課時主要講授平面內兩點間距離公式、兩角和與差的余弦公式以及它們的簡單應用。這節內容在高考中不但是熱點,而且一般都是中、低檔題,是一定要拿到分的題。

  教學重點:兩角和與差的余弦公式的推導與運用。

  教學難點:余弦和角公式的推導以及應用,學會恰當代換、逆用公式等技能。

  二、教學目標

  (一)知識目標:

  1、掌握利用平面內兩點間的距離公式進行C(α+β)公式的推導;

  2、能用代換法推導C(α—β)公式;

  3、初步學會公式的簡單應用和逆用公式等基本技能。

  (二)能力目標:

  1、通過公式的推導,在培養學生三大能力的基礎上,著重培養學生獲得數學知識的能力和數學交流的能力;

  2、通過公式的靈活運用,培養學生的轉化思想和變換能力。

  (三)情感目標:

  1、通過觀察、對比體會公式的線形美,對稱美

  2、通過教師啟發引導,培養學生不怕困難,勇于探索勇于創新的求知精神。

  三、學情分析:

  根據現在的學生知識遷移能力差、計算能力差的特點,第一節課不要太多公式應用。

  四、教法分析

  1、創設情境————提出問題————探索嘗試————啟發引導————解決問題。

  引導學生建立一直角坐標系xOy,同時在這一坐標系內作單位圓O,并作出角,使角的始邊為Ox,交圓O于點,終邊交圓O于點;角的始邊為O,終邊交圓O于,角的始邊為O,終邊交圓O于點,并引導學生用的三角函數標出點的坐標。并充分利用單位圓、平面內兩點的距離公式,使學生弄懂由距離等式化得的三角恒等式,并整理成為余弦的和角公式,從而克服本課的難點。

  2、教具:多媒體投影系統。(多媒體系統可以有效增加課堂容量,色彩的強烈對比可以突出對比效果;動畫的應用可以將抽象的問題直觀化,體現直觀性原則。)

  五、學法指導

  1、能靈活求寫角的終邊與單位圓的交點坐標,并結合平面幾何知識推證出公式。

  2、本節的中心公式是,然后對作不同的特值代換可得其他公式,故靈活適當的代換是學好本節內容的基礎。

  3、讓學生注意觀察、對比兩角和與差的余弦公式中正弦、余弦的順序;角的順序關系,培養學生的觀察能力,并通過觀察體會公式的對稱美。

  在教學過程中,啟動學生自主性學習,自得知識,自覓規律,自悟原理,主動發展思維和能力。

  六、教學過程

  (一)新課引入,產生對公式的需求。

  1、學生先討論“ =cos(450+300)=cos450+cos300是否成立?”。(學生可能通過計算器、量余弦線的長度、特殊角三角函數值和余弦函數的值域三種途徑解決問題)。得出cos(450+300)≠cos450 +cos300。進而得出cos(α+β)≠cosα+cosβ這個結論。那么此時又是多少,75°,15°雖然不是特殊角,但有某種特殊性,即可以表示成特殊角的和與差。那么能不能由特殊角的三角函數值來表示這種和角與差角的三角函數值?

  2、如果特殊角可以,對一般的兩個角,當它的三角函數值已知時,能否求出和與差的三角函數值?即能否用單角的三角函數來表示復角的三角函數呢?提出cos(α+β)又等于什么呢?寫出標題。

  (二)預備知識

  在解決上面的問題之前,我們先來作一點準備,解決“平面內兩點間距離的公式”這一問題。

  (1)回憶初中學習過的數軸上的兩點間的距離公式

  (2)通過上面的復習,我們已經熟悉了數軸上兩點間距離公式。那么,平面內兩點間距離與這兩點的坐標有什么樣的關系呢?(通過課件演示讓學生體會平面內兩點間距離和同一坐標軸上兩點間距離的關系)

  平面內兩點間距離公式推導分析:設P1(x1,y1),P2(x2,y2)由勾股定理聯想從P1、P2分別作X、Y軸的垂線,則有:M1(x1,0),M2(x2,0),N1(0,y1),N2(0,y2)。通過演示課件P1Q= M1M2=│x2—x1│ QP2= N1N2=│y2—y1│根據勾股定理寫出P1P22=P1Q2+QP22=(x2—x1)2+(y2—y1)2。由此得平面內P1(x1,y1)、P2(x2,y2)兩點間的距離公式:P1P2=(x2—x1)2+(y2—y1)2

  習:P(3,—1),Q(—3,—9)求PQ(建議這部分不要花太多時間)

  (3)、復習單位圓上點的坐標表示,為推導公式作鋪墊。

  (三)公式推導

  我們要用α、β、α+β的三角函數來表示α+β的余弦,那么就得作出α、β、α+β的角,構造α、β、α+β的角時,聯想建坐標系、作單位圓。(1)分別指出點P1、P2、P3的坐標。(2)求出弦P1P3的長。(3)思考構造弦P1P3的等量關系。當發現|P1P3|可以用cos(α+β)表示時,想到應該尋找與P1P3相等的弦,從而才想到作出角(—β)。

  在直角坐標系內做單位圓,并做出任意角α,α+β和—β。它們的終邊分別交單位圓于P2、P3和P4點,單位圓與X軸交于P1。則:P1(1,0)、 P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、

  1.根據“同圓中相等的圓心角所對的弦相等”得到距離等式

  2.將轉化為三角恒等式,逐步變形整理成余弦的和角公式。

  [cos(α+β)—1]2+sin2(α+β)=[cos(—β)—cosα]2+[sin(—β)—sinα]2展開,整理得2—2cos(α+β)=2—2cosαcosβ+2sinαsinβ

  所以cos(α+β)=cosαcosβ—sinαsinβ。記作

  注意:(1)公式的結構特征:左邊是兩角和的余弦,右邊是兩兩同名函數的積。

  (2)公式的記憶口訣:哥哥撿傘傘(用音譯,讓學生覺得有趣并得以記住公式)

  (3)公式的用途:用單角α、β的三角函數來表示復角的α+β余弦

  (4)注意強調公式中α、β是任意角。因為α、β是任意角,且兩點間的距離公式具有一般性,所以此公式適用于任意角,具有一般性。以后可以用此公式導出其它公式,如用—β去代替β導出C(α—β)。

  (四)公式應用

  正因為α、β的任意性,所以賦予C(α+β)公式的強大生命力。

  提問:

  1、請用特殊角分別代替公式中α、β,你會求出哪些非特殊角的值呢?

  讓學生動筆自由嘗試、主動探索。同學會求cos15°、cos75°、cos105°等。

  2、若β固定,分別用代替α,你將發現什么結論呢?

  用C(α±β)公式得到證明:讓學生發現C(α±β)公式是誘導公式的推廣,誘導公式是C(α±β)公式的特殊情況。當其中一個角是的整數倍時用誘導公式較好。

  由P1P3=P2P4(同圓相等的

  圓心角所對弦相等)及兩點

  間距離公式,得:

  [cos(α+β)—1]2+[sin(α+β)—0]2

  =[cos(—β)—cosα]2+[sin(—β)—sinα]2

  展開整理合并得:

  cos(α+β)=cosα cosβ—sinαsinβ這就是兩角和的余弦公式。(其中α,β為任意角)將其中β換成—β,公式仍成立:

  cos(α+ β)=cosαcosβ —sinαsinβ

  cos(α+(—β))= cosαcos(—β)—sinαsin(—β)

  化簡得兩角差的余弦公式:

  cos(α—β)= cosαcosβ+sinαsinβ

  求證:(1)cos(—α)= sinα

  (2)sin(—α)= cosα

  證明:

  (1)cos(—α)=cos cosα+sin sinα

  =sinα

  (2)sin(—α)=cos[ —(—α)]

  =cosα

  證明(1)、(2)的結論即為誘導公式。

  例1、利用和(差)角公式求750、150角的余弦。

  分析:將750可以看成450+300而450和300均為特殊

  角,借助它們即可求出750的余弦。(學生自己完成)

  解:cos750 = cos(450+300)

  = cos450cos300 —sin450sin300

  = ×— ×

  cos150 = cos(450—300)

  = cos450cos300+sin450sin300

高中數學說課稿2

  各位評委老師你們好,我是第?號選手。我今天說課的題目是《 》,我將從教材分析,教法,學法,教學程序,等幾個方面進行我的說課。

  一,教材分析

  這部分我主要從3各方面闡述

  1, 教材的地位和作用

  《 》是北師大版必修?第?章第?節的內容,在此之前,同學們已經學習了、,這些對本節課的學習有一定的鋪墊作用,同是學好本節的內容不僅加深前面所學習的知識,而且為后面我們將要學習的?知識打好基礎,?所以說本節課的學習在整個高中數學學習過程中占有重要地位!

  2.根據教學大綱的規定,教學內容的要求,教學對象的實情我確定了如下3維教學目標(i)知識目標:

  II能力目標;初步培養學生歸納,抽象,概括的思維能力。

  訓練學生認識問題,分析問題,解決問題的能力

  III情感目標;通過學生的探索,史學生體會數學就在我們身邊,讓學生發現生活的數學,培養不斷超越的創新品質,提高數學素養。

  3, 結合以上分析以及高一學生的人知水平我確定啦本節課的重難點

  教學重點:

  教學難點;

  二,教法

  教學方法是完成教學任務的手段,恰當的學者教學方法至關重要,根據本節課的教學內容,考慮到高一學生已經初步具有一定的探索能力,并喜歡挑戰問題的實際情況,為啦更有效的突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的知道思想。我主要采用 問題探究法 引導發現發,案例教學法,講授法,在教學過程中精心設計帶有啟發性和思考性的問題,滿足學生探索的欲望,培養學生的學習興趣,激發來自學生主體最有利的動力。并運用多媒體課件的形式,更形象直觀,提高教學效果的同時加大啦課堂密度!

  學法

  根據學生的年齡特征,運用訊息漸進,逐步升入,理論聯系實際的規律,讓學生從問題中質疑,嘗試,歸納,總結,運用。培養學生發現問題,研究問題,分析問題的能力。自主參與知識的發生,發展,形成過程,完成從感性認識 到理性思維的質的飛躍,史學生在知識和能力方面都有所提高。

  三,教學程序

  1, 創設情境,提出問題

  讓學生產生強烈的問題意識,學生試著利用以前的知識經驗,同化索引出當前學習的新知識,激發學習的興趣和動機。

  2, 引導探究,直奔主題。(揭示概念)

  參用小組合作的方式,各小組派代表發表成果,教師作為教學的引導者,給予肯定的評價,并給出一定的指導,最后師生共同得出??!教師引導學生進一步學習。整個過程充分突出學生的主體地位,培養學生合作探究的能力,激發興趣,更讓學生在思考學術問題以及解決數學問題的思想方法上有更深的交流。

  3, 自我嘗試,初步應用

  在講解是,不僅在于怎樣接,更在于為什么這樣解,及時引導學生探究運用知識,解決問題的方法,及時對解題方法和規律進行概括,有利于培養學生的思維能力。 4 .當堂訓練,鞏固深化(反饋矯正)

  通過學生的主體參與,讓學生鞏固所學的知識,實現對知識再認識的以及在數學解題思想方法層面上進一步升華

  5,歸納小結,回顧反思

  從知識,方法,經驗等方面進行總結。讓學生思考本節課學到啦那些知識,還有那些疑問。本節課最大的體驗。本節課你學會那些技能。

  知識性的內容小結,可以把課堂教學傳授的知識盡快轉化為學生的素養,數學思想發放的小結,可以使學生更深刻地理解數學思想發放在解題中的地位和作用,并且逐步培養學生良好的個性品質目標。

  ,6,變式延伸,布置作業

  必做題,對本屆課學生知識水平的反饋。選作題,對本節課知識內容的延伸。使不同層次學生都可以收獲成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,讓每個學生在原有的基礎上有所發展。做到人人學數學,人人學不同的數學。

  7板書設計

  力圖簡潔,形象,直觀,概括以便學生易于掌握。

  四,教學評價

  學生學習結果評價當然重要,但是學習過程的評價更加重要。本節課中高度重視學生學習過程中的參與度,自信心,團隊精神,合作意識,獨立思考習慣的養成。數學發現的能力,以及學習的興趣和成就感,,學生熟悉的問題情境可以激發學生的學習興趣,問題串的設計可以讓更多學生主動參與,師生對話可以實現師生合作,適度的研討可以駐京生生交流,知識的生成和問題的解決可以讓學生感受到成功的喜悅。縝密的思考可以培養學生獨立思考的習慣,讓學生在教室評價,學生評價以及自我評價的過程中體驗知識的積累,探索能力的長進和思維品質的提高,為學生的可持續發展打下基礎,

  以上就是我的說課內容。不當之處,希望各位老師給予指正。謝謝各位評委老師!你們幸苦啦!

高中數學說課稿3

各位教師:

  今天我說課的題目是《必修》4第二章第二單元中“平面向量的線性運算”的第一節課《向量的加法》,我從以下幾個方面闡述本課的教學設計。

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學情分析:

  學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

  三、教學目的:

  1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

  2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、通過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的能力。

  四、教學重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。

  五、教學方法

  本節采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數學思想的體現:

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現在以下三個環節①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學過程:

  1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

  2、引入新課:

  (1)平行四邊形法則的引入。

  學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。

  (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

  這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

  設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。

  (3)共線向量的加法

  方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。”引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數加法中的異號兩數相加:“異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。”類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發現結論正確。

  反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則。對有如下規定:

  +

  =

  +

  =

  通過以上幾個環節的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

  (4)向量加法的運算律

  ①交換律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。

  ②結合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。

  接下來是對應的兩個練習,運用交換律與結合律計算向量的和。

  設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

  3、小結

  先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結內容,使學生印象更深。

  (1)平行四邊形法則:起點相同,適用于不共線向量的求和。

  (2)三角形法則首尾相接,適用于任意多個向量的求和。

  (3)運算律

  交換律:

  +

  =

  +

  結合律:(

  +

  )+

  =

  +(

  +

  )

  4、作業:P91,A組1、2、3。

  《向量的加法》評課稿

  本節所授內容基本與原先設想一致,評略得當,重點突出,難點化解。在兩個加法則的引入、講解及運用的處理方法、時間安排都把握得比較好,能夠引導學生積極主動地探索平行四邊形法則和三角形法則,使學生對兩個加法法則形成了正確的認識,留下了深刻的印象,通過反饋練習,可以看出學生對兩個法則的運用掌握的比較好,比較完整地實現了教學目標。

  本節課的教學方法運用比較合理:采取了類比、探究、講練結合及多媒體技術等多種方法。對數學課來說,本節課最顯著的特點是將全部板書都移到了課件上,對我來說,是一次嘗試,因為以前,我認為數學課沒必要用課件,對全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學生的反饋情況來看,這樣處理對教學效果沒有什么不良影響,反而使學生能更直觀地理解兩個加法法則和運算律,通過課件中的向量的平移,加深了學生對上節課所學的“相等向量”的概念的理解,也加大了課堂容量,還沒有擁擠之感。從學生對內容小結的敘述看,沒有板書,并沒有妨礙本節內容在學生腦海中留下的印象。原先的設計中,板書設計也有,打在教案的后面。

  通過這節課的講授,我收獲很多:首先,從課程的構思上,沒有按照教參建議及網上普遍的編排方法先講三角形法則,而是先由學生學過的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯。可見,對教材的處理確實要根據學生情況,靈活裁剪,不能生搬硬套。

  其次,通過這節課我感到,對有些與圖形聯系較多的課程,使用課件講解簡便易行,關鍵是要根據教學設計制作合適的課件,并且合理使用。

  本節缺憾也很多。首先,學生活動還是偏少,沒有充分、全面地調動學生熱情。其次,語言不夠精煉,有時比較啰嗦,也耽誤了時間,第三,學生發言時,好打斷學生,總覺得學生說得不清楚,搶學生話頭,打擊了學生課堂參與的積極性,很不好。

  以上是我對這節課的反思,不到之處,請大家指點。

高中數學說課稿4

  一、說教材

  1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。

  2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節課的難點是理解和領悟反比例函數的概念。

  二、說教學目標

  根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:

  1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。

  2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。

  三、說教法

  本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。

  四、說學法

  我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。

  好學教育:

  因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。

高中數學說課稿5

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

  本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。

  二、教學目標

  1、學習目標

  (1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬

  于”關系;

  (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  2、能力目標

  (1)能夠把一句話一個事件用集合的方式表示出來。

  (2)準確理解集合與及集合內的元素之間的關系。

  3、情感目標

  通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。

  三、教學重點與難點

  重點 集合的基本概念與表示方法;

  難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

  四、教學方法

  (1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;

  (2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

  五、學習方法

  (1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

  教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。

  (2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

  優扶差,滿足不同。”

  六、教學思路

  具體的思路如下

  復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。

  一、 引入課題

  軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

  在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

  二、 正體部分

  學生閱讀教材,并思考下列問題:

  (1)集合有那些概念?

  (2)集合有那些符號?

  (3)集合中元素的特性是什么?

  (4)如何給集合分類?

  (一)集合的有關概念

  (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

  都可以稱作對象.

  (2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

  這些對象的全體構成的集合.

  (3)元素:集合中每個對象叫做這個集合的元素.

  集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

  對學生的例子予以討論、點評,進而講解下面的問題。

  2、元素與集合的關系

  (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

  (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

  要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

  (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.

  (2)互異性:集合中的元素一定是不同的.

  (3)無序性:集合中的元素沒有固定的順序.

  4、集合分類

  根據集合所含元素個屬不同,可把集合分為如下幾類:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個元素的集合叫做有限集

  (3)含有無窮個元素的集合叫做無限集

  注:應區分?,{?},{0},0等符號的含義

  5、常用數集及其表示方法

  (1)非負整數集(自然數集):全體非負整數的集合.記作N

  (2)正整數集:非負整數集內排除0的集.記作N*或N+

  (3)整數集:全體整數的集合.記作Z

  (4)有理數集:全體有理數的集合.記作Q

  (5)實數集:全體實數的集合.記作R

  注:(1)自然數集包括數0.

  (2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

  除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

  (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說明:(課本P5最后一段)

  思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

  說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (三)課堂練習(課本P6練習)

  三、 歸納小結與作業

  本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書面作業:習題1.1,第1- 4題

高中數學說課稿6

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質的第2小節。

  奇偶性是函數的一條重要性質,教材從學生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著承上啟下的重要作用。

  2、學情分析

  從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了一定數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的`基本方法與初步經驗。

  從學生的思維發展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、

  3、教學目標

  基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

  【知識與技能】

  1、能判斷一些簡單函數的奇偶性。

  2、能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態度與價值觀】

  通過自主探索,體會數形結合的思想,感受數學的對稱美。

  從課堂反應看,基本上達到了預期效果。

  4、教學重點和難點

  重點:函數奇偶性的概念和幾何意義。

  幾年的教學實踐證明,雖然函數奇偶性這一節知識點并不是很難理解,但知識點掌握不全面的學生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問題。因此,在介紹奇、偶函數的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節課重點問題的講解。

  難點:奇偶性概念的數學化提煉過程。

  由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學化提煉過程設計為本節課的難點。

  二、教法與學法分析

  1、教法

  根據本節教材內容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態,從而培養思維能力。從課堂反應看,基本上達到了預期效果。

  2、學法

  讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發生、發展、形成的過程,從而使學生掌握知識。

  三、教學過程

  具體的教學過程是師生互動交流的過程,共分六個環節:設疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業,學以致用。下面我對這六個環節進行說明。

  (一)設疑導入、觀圖激趣

  由于本節內容相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的內容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。

  用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。通過讓學生觀察圖片導入新課,既激發了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

  (二)指導觀察、形成概念

  在這一環節中共設計了2個探究活動。

  探究1 、2 數學中對稱的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是通過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。接著學生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學生先把它們具體化,再用數學符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學生發現兩個函數的對稱性反應到函數值上具有的特性, ()然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個 都成立。 最后給出偶函數(奇函數)定義(板書)。

  在這個過程中,學生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。

  (三) 學生探索、領會定義

  探究3 下列函數圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節課的難點)

  (四)知識應用,鞏固提高

  在這一環節我設計了4道題

  例1判斷下列函數的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。

  例1設計意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關于原點對稱;

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數的奇偶性:

  例3 判斷下列函數的奇偶性:

  例2、3設計意圖是探究一個函數奇偶性的可能情況有幾種類型?

  例4(1)判斷函數的奇偶性。

  (2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數奇偶性的幾何意義的應用。

  在這個過程中,我重點關注了學生的推理過程的表述。通過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,達到當堂消化吸收的效果。

  (五)總結反饋

  在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發式、問題式教學法的特色。

  在本節課的最后對知識點進行了簡單回顧,并引導學生總結出本節課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數學綜合能力的很重要的策略。

  (六)分層作業,學以致用

  必做題:課本第36頁練習第1-2題。

  選做題:課本第39頁習題1、3A組第6題。

  思考題:課本第39頁習題1、3B組第3題。

  設計意圖:面向全體學生,注重個人差異,加強作業的針對性,對學生進行分層作業,既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步達到不同的人在數學上得到不同的發展。

高中數學說課稿7

  一、教材分析

  1。《指數函數》在教材中的地位、作用和特點

  《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

  此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

  2。教學目標、重點和難點

  通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

  知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

  技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

  素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

  鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

  (1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;

  (2)技能目標:①滲透數形結合的基本數學思想方法②培養學生觀察、聯想、類比、猜測、歸納的能力;

  (3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數學科學的應用價值。

  (4)教學重點:指數函數的圖象和性質。

  (5)教學難點:指數函數的圖象性質與底數a的關系。

  突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

  二、教法設計

  由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

  1。創設問題情景。按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

  2。強化“指數函數”概念。引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

  3。突出圖象的作用。在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

  4。注意數學與生活和實踐的聯系。數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

  三、學法指導

  本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

  1。再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

  2。領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

  3。在互相交流和自主探

高中數學說課稿8

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質的第2小節。

  奇偶性是函數的一條重要性質,教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。所以,本節課起著承上啟下的重要作用。

  2、學情分析

  從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了必須數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。

  從學生的思維發展看,高一學生思維本事正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、

  3、教學目標

  基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

  【知識與技能】

  1)能確定一些簡單函數的奇偶性。

  2)能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經歷奇偶性概念的構成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。

  【情感、態度與價值觀】

  經過自主探索,體會數形結合的思想,感受數學的對稱美。

  從課堂反應看,基本上到達了預期效果。

  4、教學重點和難點

  重點:函數奇偶性的概念和幾何意義。

  幾年的教學實踐證明,雖然函數奇偶性這一節知識點并不是很難理解,但知識點掌握不全面的學生容易出現下頭的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了研究函數定義域的問題。所以,在介紹奇、偶函數的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。所以,我把函數的奇偶性概念設計為本節課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節課重點問題的講解。

  難點:奇偶性概念的數學化提煉過程。

  由于,學生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數學化提煉過程設計為本節課的難點。

  二、教法與學法分析

  1、教法

  根據本節教材資料和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,使學生始終處于主動探索問題的進取狀態,從而培養思維本事。從課堂反應看,基本上到達了預期效果。

  2、學法

  讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發生、發展、構成的過程,從而使學生掌握知識。

  三、教學過程

  具體的教學過程是師生互動交流的過程,共分六個環節:設疑導入、觀圖激趣;指導觀察、構成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業,學以致用。下頭我對這六個環節進行說明。

  (一)設疑導入、觀圖激趣

  由于本節資料相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的資料,使學生的思維迅速定向,到達開始就明確目標突出重點的效果。

  用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。經過讓學生觀察圖片導入新課,既激發了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

  (二)指導觀察、構成概念

  在這一環節中共設計了2個探究活動。

  探究1、2數學中對稱的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是經過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。之后學生填表,從數值角度研究圖象的這種特征,體此刻自變量與函數值之間有何規律引導學生先把它們具體化,再用數學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發現兩個函數的對稱性反應到函數值上具有的特性,然后經過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個都成立。最終給出偶函數(奇函數)定義(板書)。

  在這個過程中,學生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。

  (三)學生探索、領會定義

  探究3下列函數圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節課的難點)

  (四)知識應用,鞏固提高

  在這一環節我設計了4道題

  例1確定下列函數的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下頭完成。

  例1設計意圖是歸納出確定奇偶性的步驟:

  (1)先求定義域,看是否關于原點對稱;

  (2)再確定f(-x)=-f(x)還是f(-x)=f(x)。

  例2確定下列函數的奇偶性:

  例3確定下列函數的奇偶性:

  例2、3設計意圖是探究一個函數奇偶性的可能情景有幾種類型?

  例4(1)確定函數的奇偶性。

  (2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數奇偶性的幾何意義的應用。

  在這個過程中,我重點關注了學生的推理過程的表述。經過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,到達當堂消化吸收的效果。

  (五)總結反饋

  在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發式、問題式教學法的特色。

  在本節課的最終對知識點進行了簡單回顧,并引導學生總結出本節課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用本事、增強錯誤的預見本事是提高數學綜合本事的很重要的策略。

  (六)分層作業,學以致用

  必做題:課本第36頁練習第1-2題。

  選做題:課本第39頁習題1、3A組第6題。

  思考題:課本第39頁習題1、3B組第3題。

  設計意圖:面向全體學生,注重個人差異,加強作業的針對性,對學生進行分層作業,既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步到達不一樣的人在數學上得到不一樣的發展。

高中數學說課稿9

  一、背景分析

  1、學習任務分析:充要條件是中學數學中最重要的數學概念之一,它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數學學習特別是數學推理的學習打下基礎。

  教學重點:充分條件、必要條件和充要條件三個概念的定義。

  2、學生情況分析:從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.因此,新教材在第一章的小結與復習中,把學生的學習要求規定為“初步掌握充要條件”(注意:新教學大綱的教學目標是“掌握充要條件的意義”),這是比較切合教學實際的.由此可見,教師在充要條件這一內容的新授教學時,不可拔高要求追求一步到位,而要在今后的教學中滾動式逐步深化,使之與學生的知識結構同步發展完善。

  教學難點:“充要條件”這一節介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數學的難點之一,而必要條件的定義又是本節內容的難點.根據多年教學實踐,學生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結論,怎么又變成條件了呢?對這學生難于理解。

  教學關鍵:找出A、B,根據定義判斷A=B與B=A是否成立。教學中,要強調先找出A、B,否則,學生可能會對必要條件難以理解。

  二、教學目標設計:

  (一)知識目標:

  1、正確理解充分條件、必要條件、充要條件三個概念。

  2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關系。

  (二)能力目標:

  1、培養學生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。

  2、培養學生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結出一般規律。

  (三)情感目標:

  1、通過以學生為主體的教學方法,讓學生自己構造數學命題,發展體驗獲取知識的感受。

  2、通過對命題的四種形式及充分條件,必要條件的相對性,培養同學們的辯證唯物主義觀點。

  3、通過“會觀察”,“敢歸納”,“善建構”,培養學生自主學習,勇于創新,多方位審視問題的創造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現出濃厚的興趣和不畏困難、勇于進取的精神。

  三、教學結構設計:

  數學知識來源于生活實際,生活本身又是一個巨大的數學課堂,我在教學過程中注重把教材內容與生活實踐結合起來,加強數學教學的實踐性,給數學找到生活的原型。我對本節課的數學知識結構進行創造性地“教學加工”,在教學方法上采用了“合作——探索”的開放式教學模式,使課堂教學體現“參與式”、“生活化”、“探索性”,保證學生對數學知識的主動獲取,促進學生充分、和諧、自主、個性化的發展。

  整體思路為:教師創設情境,激發興趣,引出課題 引導學生分析實例,給出定義 例題分析(采用開放式教學) 知識小結 擴展例題 練習反饋

  整個教學設計的主要特色:

  (1)由生活事例引出課題;

  (2)采用開放式教學模式;

  (3)擴展例題是分析生活中的名言名句,又將數學融入生活中。

  努力做到:“教為不教,學為會學”;要“授之以魚”更要“授之以漁”。

  四、教學媒體設計:

  本節課是概念課,要避免單一的下定義作練習模式,應該努力使課堂元素更為豐富。這節課,我借助了多媒體課件,配合教學,添加了一些與例題相匹配的圖片背景,以激發學生的學習興趣,另外將學生的自編題利用多媒體課件展示出來分析,提高了課堂教學的效率。

  五、教學過程設計:

  第一,創設情境,激發興趣,引出課題:

  考慮到高一學生學習這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。

  我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業員應該買多少?他說買3米足夠了。”這樣,就產生了“3米布料”與“做一件襯衫夠不夠”的關系。用這個事件目的是為了第二部分引導學生得出充分條件的定義。這里要強調該事件包括:A:有3米布料;B:做一件襯衫夠了。

  第二個事例是:“一人病重,呼吸困難,急診住院接氧氣。”就產生了“氧氣”與“活命與否”的關系。用這個事件的目的是為了第二部分引導學生得出必要條件的定義。這里要強調該事件包括:A:接氧氣;B:活了。

  用以上兩個生活中的事例來說明數學中應研究的概念、關系,會使學生感到親切自然,有助于提高興趣和深入領會概念的內容,特別是它的必要性。

  第二,引導學生分析實例,給出定義。

  在第一部分激發起學生的學習興趣后,緊接著開展第二部分,引導學生分析實例,讓學生從事例中抽象出數學概念,得出本節課所要學習的充分條件和必要條件的定義。在引導過程中盡量放慢語速,結合事例幫助學生分析。

  得出定義之后,這里有必要再利用本課前面兩節的“邏輯聯結詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。

  還應指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。

  當兩個定義分別給出后,我又對它們之間的區別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數學事例來強化。

高中數學說課稿10

  一、教材分析

  1.《指數函數》在教材中的地位、作用和特點

  《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

  此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

  2.教學目標、重點和難點

  通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

  知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

  技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

  素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

  鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

  (1)知識目標:

  ①掌握指數函數的概念;

  ②掌握指數函數的圖象和性質;

  ③能初步利用指數函數的概念解決實際問題;

  (2)技能目標:

  ①滲透數形結合的基本數學思想方法

  ②培養學生觀察、聯想、類比、猜測、歸納的能力;

  (3)情感目標:

  ①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力

  ③領會數學科學的應用價值。

  (4)教學重點:指數函數的圖象和性質。

  (5)教學難點:指數函數的圖象性質與底數a的關系。

  突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

  二、教法設計

  由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

  1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

  2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

  3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

  4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

  三、學法指導

  本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

  1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

  2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

  3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。

  4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。

  四、程序設計

  在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。

  1.創設情景、導入新課

  教師活動:

  ①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,

  ②將學生按奇數列、偶數列分組。

  學生活動:

  ①分別寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;

  ②回憶指數的概念;

  ③歸納指數函數的概念;

  ④分析出對指數函數底數討論的必要性以及分類的方法。

  設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性, 為突破難點做好準備;

  2.啟發誘導、探求新知

  教師活動:

  ①給出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。

  學生活動:

  ①畫出兩個簡單的指數函數圖象

  ②交流、討論

  ③歸納出研究函數性質涉及的方面

  ④總結出指數函數的性質。

  設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。

  3.鞏固新知、反饋回授

  教師活動:

  ①板書例1

  ②板書例2第一問

  ③介紹有關考古的拓展知識。

高中數學說課稿11

  一、教材分析

  本節是人教A版高中數學必修三第二章《統計》中的第三節 “變量間的相關關系” 的第二課時。在上一課時,學生已經懂得根據兩個相關變量的數據作出散點圖,并利用散點圖直觀認識變量間的相關關系。這節課是在上一節課的基礎上介紹了用線性回歸的方法研究兩個變量的相關性和最小二乘法的思想。

  從全章的內容上看,線性回歸方程的建立不僅是本節的難點,也是本章內容的難點之一。線性回歸是最簡單的回歸分析,學好回歸分析是學好統計學的重要基礎。

  二、教學目標

  根據課標的要求及前面的分析,結合高二學生的認知特點確定本節課的教學目標如下:

  知識與技能:

  1. 知道最小二乘法和回歸分析的思想;

  2. 能根據線性回歸方程系數公式求出回歸方程

  過程與方法:

  經歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數學應用和使用技術的意識。

  情感態度與價值觀

  通過合作學習,養成傾聽別人意見和建議的良好品質

  三、重點難點分析:

  根據目標分析,確定教學重點和難點如下:

  教學重點:

  1. 知道最小二乘法和回歸分析的思想;

  2.會求回歸直線

  教學難點:

  建立回歸思想,會求回歸直線

  四、教學設計

  提出問題

  理論探究

  驗證結論

  小結提升

  應用實踐

  作業設計

  教學環節

  內容及說明

  創設情境

  探究:在一次對人體脂肪含量和年齡關系的研究中,研究人員獲得了一組樣本數據:

  問題與引導設計

  師生活動

  設計意圖

  問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關還是負相關?

  教師提問,學生

  通過動手操作得

  出散點圖并回答

  以舊“探”新:對舊的知識進行簡要的提問復習,為本節課學生能夠更好的建構新的知識做好充分的準備;尤其為一些后進生能夠順利的完成本節課的內容提供必要的基礎。

  教師引導:通過上節課的學習,我們知道散點圖是研究兩個變量相關關系的一種重要手段。下面,請同學們根據得出的散點圖,思考下面的問題2.

  問題2. 甲同學判斷某人年齡在65歲時體內脂肪含量百分比可能為34,乙同學判斷可能為25,而丙同學則判斷可能為37,你對甲,

  乙,丙三個同學的判斷有什么看法?

  學生能夠表達自己的看法。有的學生可能會認為乙同學的判斷是錯誤的;有的學生可能認為甲乙丙三個同學的判斷都是對的,答案不唯一

  該問題具有探究性、啟發性和開放性。鼓勵學生大膽表達自己的看法。通過設計該問題,引導學生自己發現問題,注意到散點圖中點的分布具有一定規律,體會觀測點與回歸直線的關系;進而引起學生的對本節課內容的興趣。

  問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多

  在小組討論的形式下和比較哪個小組提出的問題多,學生之間會充分的進行交流,提出問題

  通過小組討論比較,調動學生的學習積極性和興趣,活躍課堂氣氛,達到學生自己提出問題的效果,培養學生的學生創新思維和問題意識。

  學生可能提出的問題:

  ①為什么甲、丙同學的判斷結果正確的可能性較大,而乙同學判斷結果正確的可能性較小?

  ②某人年齡在65歲時體內脂肪含量百分比最可能是多少?在其它年齡時呢?

  ③這些樣本數據揭示出兩個相關變量之間怎樣的關系呢?

  ④怎樣用數學的方法研究變量之間的相關關系呢?每個問題都是學生“火熱的思考”成果

高中數學說課稿12

  高中數學第三冊(選修)Ⅱ第一章第2節第一課時

  一、教材分析

  教材的地位和作用

  期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。

  教學重點與難點

  重點:離散型隨機變量期望的概念及其實際含義。

  難點:離散型隨機變量期望的實際應用。

  [理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。

  二、教學目標

  [知識與技能目標]

  通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

  會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

  [過程與方法目標]

  經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。

  通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。

  [情感與態度目標]

  通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。

  三、教法選擇

  引導發現法

  四、學法指導

  “授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。

  五、教學的基本流程設計

  高中數學第三冊《離散型隨機變量的期望》說課教案.rar

高中數學說課稿13

  尊敬的各位專家、評委:

  下午好!

  我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。

  一、教材分析

  (一)地位與作用

  數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

  (二)學情分析

  (1)學生已熟練掌握_________________。

  (2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

  (3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。

  (4) 學生層次參次不齊,個體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:

  (一)教學目標

  (1)知識與技能

  使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。

  (2)過程與方法

  引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

  (3)情感態度與價值觀

  在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。

  (二)重點難點

  本節課的教學重點是________________________,教學難點是_____________________。

  三、教法、學法分析

  (一)教法

  基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.

  (二)學法

  在學法上我重視了:

  1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

  2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。

  四、教學過程分析

  (一)教學過程設計

  教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。

  (1)創設情境,提出問題。

  新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。

  (2)引導探究,建構概念。

  數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.

  (3)自我嘗試,初步應用。

  有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

  (4)當堂訓練,鞏固深化。

  通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。

  (5)小結歸納,回顧反思。

  小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?

  (二)作業設計

  作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本

  節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.

  我設計了以下作業:

  (1)必做題

  (2)選做題

  (三)板書設計

  板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。

  五、評價分析

  學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝!

高中數學說課稿14

  一、說設計理念

  《數學課程標準》指出要讓學生感受生活中處處有數學,用數學知識解決生活中的實際問題。

  基于這一理念,我在教學過程中力求聯系學生生活實際和已有的知識經驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數學課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學氛圍,讓學生經歷知識的探究過程,培養學生感受生活中的數學和用數學知識解決生活問題的能力,體驗數學的應用價值。

  二、教材分析:

  (一)教材的地位和作用

  有關統計圖的認識,小學階段主要認識條形統計圖、折線統計圖和扇形統計圖。考慮到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學內容安排在本單元。本單元是在前面學習了條形統計圖和折線統計圖的特點和作用的基礎上進行教學的。主要通過熟悉的事例使學生體會到扇形統計圖的實用價值。

  (二)教學目標

  1、聯系生活情境了解扇形統計圖的特點和作用

  2、能讀懂扇形統計圖,從中獲取有效的信息。

  3、讓學生在觀察、比較、討論和交流中體會扇形統計圖反映的是整體和部分的關系。

  (三)教學重點:

  1、能讀懂扇形統計圖,理解扇形統計圖的特點和作用,并能從中獲取有效信息。

  2、認識折線統計圖,了解折線統計圖的特點。

  (四)教學難點:

  1、能從扇形統計圖中獲得有用信息,并做出合理推斷。

  2、能根據統計圖和數據進行數據變化趨勢的分析。

  二、學情分析

  本單元的教學是在學生已有統計經驗的基礎上,學習新知的。六年級的學生已經學習了條形統計圖和折線統計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎上,通過新舊知識對比,自然生成新知識點。

  三、設計理念和教法分析

  1、本堂課力爭做到由“關注知識”轉向“關注學生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領導者。”將課堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。

  2、運用探究法。探究學習的內容以問題的形式出現在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構建知識體系。引導學生獲取信息并合作交流。

  四、說學法

  《數學課程標準》指出有效的數學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關注身邊的數學,使學生體會到觀察、概括、想象、遷移等數學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養學生學習的主動性和積極性。

  五、說教學程序

  本課分成創設情境,感知特點——分析數據,理解特征——嘗試制圖,看圖分析——實踐應用,全課總結四環節。

  六、說教學過程

  (一)復習引新

  1、復習舊知

  提問:我們學習過哪些統計方法?其中條形統計圖和折線統計圖各有什么特點?

  2、引入新課

  (二)自主探索,學習新知

  新知識教學分二步教學:第一步整體感知,看懂統計圖,理解特征,這是本節課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯系,放手讓學生獨立思考,互相合作,進一步了解統計圖的特征。

  第二步實踐應用環節。在教學中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯系。根據統計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發現問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數據變化帶來的啟示,并能合理地進行推理與判斷

  三、課堂總結

  四、布置作業。

  五、板書設計:

高中數學說課稿15

  說課:古典概型

  麻城理工學校謝衛華

  (一)教材地位及作用:本節課是高中數學(必修

  3)第三章概率的第二節古典概型的第一課時,是在

  隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。

  根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點:理解古典概型的概念及利用古典概型求解隨機事件的概率;

  根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。

  (二)根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂教學目標:

  1.知識與技能

  (1)理解古典概型及其概率計算公式(2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率2.情感態度與價值觀

  概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神

  (三)教學方法:根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征,觀

  察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。

  (四)教學過程:

  一、提出問題引入新課:在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:試驗一:拋擲一枚質地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;

  試驗二:拋擲一枚質地均勻的骰子,分別記錄“1點”、“2點”、“3點”、“4點”、“5點”和“6點”的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。

  教師最后匯總方法、結果和感受,并提出問題:1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?

  二、思考交流形成概念:學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。

  基本事件有如下的兩個特點:(1)任何兩個基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學生自行解決,從而進一步理解基本事件,然后讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,(1)試驗中所有可能出現的基本事件只有有限個(有限性);(2)每個基本事件出現的可能性相等(等可能性)。我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱

  古典概型。

  三、觀察分析推導公式:教師提出問題:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率

  結果,發現其中的聯系。實驗一中,出現正面朝上的概率與反面朝上的概率相等,即

  1“出現正面朝上”所包含的基本事件的個數,試驗二中,出現各個點的概率相等,即

  P(“出現正面朝上”)==

  2基本事件的總數3“出現偶數點”所包含的基本事件的個數,根據上述兩則模擬試驗,可以概括總結出,古典

  P(“出現偶數點”)==

  6基本事件的總數

  概型計算任何事件的

  的理解,教師提問:在使用古典概型的概率公式時,應該注意什么?學生回答,教師歸納:應該注意,(1)要判斷該概率模型是不是古典概型;

  (2)要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

  四、例題分析推廣應用:通過例題2及3,鞏固學生對已學知識的掌握,提高學生分析問題、解決問題的能力。讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。適時利用列表數形結合和分類討論等思想方法,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。

  五、總結概括加深理解:學生小結歸納,不足的地方老師補充說明。使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。

  (五)布置作業P123練習1、2題(六)板書設計

  3.2.13.2.1古典概型古典概型試驗一試驗二基本事件

  古典概型概率

  計算公式

  例3列表

  例1樹狀圖古典概型

  例2

  以上是我對《古典概型概型》這節課的理解和處理方法,歡迎各位專家朋友批評指正,謝謝!

  說課教案:古典概型

  麻城理工學校謝衛華

【高中數學說課稿】相關文章:

高中數學經典說課稿07-11

高中數學的說課稿07-11

高中數學章節說課稿06-13

高中數學統計說課稿07-11

高中數學向量說課稿07-11

高中數學數列說課稿07-11

高中數學集合的說課稿07-12

高中數學獲獎說課稿07-11

高中數學經典說課稿范文12-06

高中數學說課稿11-14

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
五月开心亚洲综合在线 | 亚洲乱码成熟视频在线播放 | 亚洲日韩欧美黑人专区 | 亚洲午夜国产精品无卡 | 亚洲成a人片在线不卡一二三区 | 中文字幕日韩精品欧美一区久久 |