數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)
在平平淡淡的學(xué)習(xí)中,相信大家一定都接觸過(guò)知識(shí)點(diǎn)吧!知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱(chēng)。那么,都有哪些知識(shí)點(diǎn)呢?下面是小編為大家整理的數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 1
一、直線與方程高考考試內(nèi)容及考試要求:
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程;
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;
二、直線與方程
課標(biāo)要求:
1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
2.理解直線的`傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫(huà)直線斜率的過(guò)程,掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式;
3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系;
4.會(huì)用代數(shù)的方法解決直線的有關(guān)問(wèn)題,包括求兩直線的交點(diǎn),判斷兩條直線的位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線的距離以及兩條平行線之間的距離等。
要點(diǎn)精講:
1.直線的傾斜角:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α= 0°.
傾斜角α的取值范圍:0°≤α<180°. 當(dāng)直線l與x軸垂直時(shí), α= 90°.
2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是k = tanα
。1)當(dāng)直線l與x軸平行或重合時(shí),α=0°,k = tan0°=0;
(2)當(dāng)直線l與x軸垂直時(shí),α= 90°,k 不存在。
由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。
3.過(guò)兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:
。ㄈ魓1=x2,則直線p1p2的斜率不存在,此時(shí)直線的傾斜角為90°)。
4.兩條直線的平行與垂直的判定
。1)若l1,l2均存在斜率且不重合:
、伲虎
注: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立。
。2)
若A1、A2、B1、B2都不為零。
注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。
兩條直線的交點(diǎn):兩條直線的交點(diǎn)的個(gè)數(shù)取決于這兩條直線的方程組成的方程組的解的個(gè)數(shù)。
5.直線方程的五種形式
確定直線方程需要有兩個(gè)互相獨(dú)立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。
直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點(diǎn)式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過(guò)原點(diǎn)的直線。
6.直線的交點(diǎn)坐標(biāo)與距離公式
。1)兩直線的交點(diǎn)坐標(biāo)
一般地,將兩條直線的方程聯(lián)立,得方程組
若方程組有唯一解,則兩條直線相交,解即為交點(diǎn)的坐標(biāo);若方程組無(wú)解,則兩條直線無(wú)公共點(diǎn),此時(shí)兩條直線平行。
。2)兩點(diǎn)間距離
兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式
特別地:軸,則、軸,則
。3)點(diǎn)到直線的距離公式
點(diǎn)到直線的距離為:
。4)兩平行線間的距離公式:
若,則:
注意點(diǎn):x,y對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)相等。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 2
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的'頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法
斜二測(cè)畫(huà)法特點(diǎn):
①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
數(shù)學(xué)必修三學(xué)習(xí)方法
首先:課前復(fù)習(xí)。就是上課前花兩三分鐘把書(shū)本本節(jié)課要學(xué)的內(nèi)容看一遍。僅僅是看一遍,過(guò)一遍。這樣上課老師講自己不但可以跟上老師節(jié)奏還可以再次鞏固。其余不要干其他多余的事。
其次:上課時(shí)候一定要專(zhuān)心聽(tīng)講,如果覺(jué)得老師這里講得都懂了的話可以自己翻書(shū)看后面的內(nèi)容。做習(xí)題的時(shí)候一定要一道一道往過(guò)做,不要越題做。因?yàn)閷?duì)于課本來(lái)說(shuō)這些都是基礎(chǔ),只有基礎(chǔ)完全掌握后才能做難題。上課過(guò)程中第一次接觸到的知識(shí)點(diǎn)概念等,一定一定要當(dāng)堂背過(guò)。不然以后很難背過(guò),不要妄想考前抱佛教再背
另外要把筆記記準(zhǔn)確,知道自己需要記什么不需要記什么,憋一個(gè)勁地往書(shū)上搬。字不要求整齊,自己能看懂就行。課本資料書(shū)上有例題,多看多記方法。先看課本基礎(chǔ),在看資料書(shū)上著重的。例題的方法一定一定要理解,不要去背!接著下課再看筆記,只是略微鞏固記住。
數(shù)學(xué)必修三學(xué)習(xí)技巧
重視改錯(cuò)錯(cuò)不重犯。
一定要重視改錯(cuò)的這份工作,做到錯(cuò)不再犯。初中數(shù)學(xué)教學(xué)中采用的方法是告訴學(xué)生所有可能的錯(cuò)誤,只要有一個(gè)人犯了錯(cuò)誤,就應(yīng)該提出,以便所有的學(xué)生都能從中吸取教訓(xùn)。這叫“一人有病,全體吃藥。”
高中數(shù)學(xué)課沒(méi)有那么多時(shí)間,除了一小部分那幾種典型錯(cuò),其它錯(cuò)誤,不能一一顧及。只能誰(shuí)有病,誰(shuí)吃藥。如果學(xué)生“生病”而忘了吃藥,那么沒(méi)有人會(huì)一次又一次地提醒他要注意什么。如果能及時(shí)改錯(cuò),那么錯(cuò)誤就可能轉(zhuǎn)變?yōu)樨?cái)富,成為預(yù)防針。但是,如果不能及時(shí)改錯(cuò),這個(gè)錯(cuò)誤就將形成一處“地雷”,遲早要惹禍。
有的學(xué)生認(rèn)為,自己考試成績(jī)上不去,是因?yàn)樘中摹F鋵?shí),原因并非如此。打一個(gè)比方。比如說(shuō),學(xué)習(xí)開(kāi)汽車(chē)。右腳下面,往左踩,是踩剎車(chē)。往右踩,是踩油門(mén)。其機(jī)械原理,設(shè)計(jì)原因,操作規(guī)程都可以講的清清楚楚。如果初學(xué)駕駛的人真正掌握了這一套,請(qǐng)問(wèn),可以同意他開(kāi)車(chē)上路嗎?恐怕他知道他還缺乏練習(xí)。一兩次你能正確地完成任務(wù),但這并不意味著你永遠(yuǎn)不會(huì)犯錯(cuò)誤。練習(xí)的數(shù)量不夠,才是學(xué)生出錯(cuò)的真正原因。大家一定要看到,如果自己的基礎(chǔ)知識(shí)漏洞百出、隱患無(wú)窮,那么,今后的數(shù)學(xué)將是難以學(xué)好的。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 3
一、隨機(jī)事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱(chēng)為相對(duì)于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱(chēng)n次試驗(yàn)中事件A出現(xiàn)的'次數(shù)nA為事件A出現(xiàn)的頻數(shù);對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱(chēng)為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。
二、概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱(chēng)事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱(chēng)事件A與事件B互為對(duì)立事件;
(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以
P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:
(1)事件A發(fā)生且事件B不發(fā)生;
(2)事件A不發(fā)生且事件B發(fā)生;
(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;
(1)事件A發(fā)生B不發(fā)生;
(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。
三、古典概型及隨機(jī)數(shù)的產(chǎn)生
(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;①求出總的基本事件數(shù);
、谇蟪鍪录嗀所包含的基本事件數(shù),然后利用公式P(A)=
四、幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
基本概念:
(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:P(A)=;
(3)幾何概型的特點(diǎn):
1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);
2)每個(gè)基本事件出現(xiàn)的可能性相等
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 4
直線方程:
1.點(diǎn)斜式:y-y0=k(x-x0)
(x0,y0)是直線所通過(guò)的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。
2.斜截式:y=kx+b
直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡(jiǎn)稱(chēng)斜截式。此斜截式類(lèi)似于一次函數(shù)的表達(dá)式。
3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。
如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的`一般式。
如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
對(duì)x的截距就是y=0時(shí),x的值,對(duì)y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來(lái)比較方便。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 5
1、函數(shù)零點(diǎn)的概念:
對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:
函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
。1)(代數(shù)法)求方程的.實(shí)數(shù)根;
。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。
4、二次函數(shù)的零點(diǎn):
二次函數(shù)。
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 6
1.有理數(shù):
。1)凡能寫(xiě)成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
。2)有理數(shù)的分類(lèi):① ②
2.數(shù)軸:
數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線。
3.相反數(shù):
。1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對(duì)值:
。1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
。2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;
5.有理數(shù)比大小:
。1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;
。3)正數(shù)大于一切負(fù)數(shù);
。4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;
。5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
。1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
。2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
8.有理數(shù)加法的運(yùn)算律:
。1)加法的`交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
。2)任何數(shù)同零相乘都得零;
。3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
。3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:
除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù)。
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
。1)求相同因式積的運(yùn)算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:
把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:
一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位。
17.有效數(shù)字:
從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:
先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問(wèn)題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問(wèn)題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 7
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱(chēng)弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
l、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
①假設(shè)命題的結(jié)論不成立;
、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱(chēng)軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的`其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
相關(guān)的角:
1、對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這兩個(gè)角叫做對(duì)頂角。
2、互為補(bǔ)角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補(bǔ)角。
3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。
4、鄰補(bǔ)角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(zhǎng)線的兩個(gè)角做互為鄰補(bǔ)角。
注意:互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補(bǔ)角則要求兩個(gè)角有特殊的位置關(guān)系。
角的性質(zhì)
1、對(duì)頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補(bǔ)角相等。
其實(shí)角的大小與邊的長(zhǎng)短沒(méi)有關(guān)系,角的大小決定于角的兩條邊張開(kāi)的程度。
角的靜態(tài)定義
具有公共端點(diǎn)的兩條射線組成的圖形叫做角(angle)。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。
角的動(dòng)態(tài)定義
一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開(kāi)始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號(hào)
角的符號(hào):∠
角的種類(lèi)
在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱(chēng)為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等于360°的角叫做周角。
負(fù)角:按照順時(shí)針?lè)较蛐D(zhuǎn)而成的角叫做負(fù)角。
正角:逆時(shí)針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
特殊角
余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對(duì)頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線相交,構(gòu)成兩對(duì)對(duì)頂角。互為對(duì)頂角的兩個(gè)角相等。
鄰補(bǔ)角:兩個(gè)角有一條公共邊,它們的另一條邊互為反向延長(zhǎng)線,具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角。
內(nèi)錯(cuò)角:互相平行的兩條直線直線,被第三條直線所截,如果兩個(gè)角都在兩條直線的
內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對(duì)角叫做內(nèi)錯(cuò)角(alternate interior angle )。如:∠1和∠6,∠2和∠5
同旁?xún)?nèi)角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對(duì)角互為同旁?xún)?nèi)角。如:∠1和∠5,∠2和∠6
同位角:兩個(gè)角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對(duì)角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯(cuò)角:兩條直線被第三條直線所截,構(gòu)成了八個(gè)角。如果兩個(gè)角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對(duì)角叫做外錯(cuò)角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對(duì)角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:
A{bb=kx360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
、僦本和圓無(wú)公共點(diǎn),稱(chēng)相離。 AB與圓O相離,d>r。
、谥本和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 8
一、實(shí)數(shù)
1.平方根性質(zhì):
。1)一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);
。2)零的平方根是零;
。3)負(fù)數(shù)沒(méi)有平方根。
2.算術(shù)平方根性質(zhì):
。1)一個(gè)正數(shù)的正的平方根叫做它的算術(shù)平方根;
(2)零的算術(shù)平方根是零;
。3)負(fù)數(shù)沒(méi)有算術(shù)平方根。
3.立方根性質(zhì):
。1)正數(shù)的立方根是正數(shù);
。2)零的立方根是零;
。3)負(fù)數(shù)的立方根是負(fù)數(shù)。
4.實(shí)數(shù)的性質(zhì):
。1)零是唯一沒(méi)有平方根的數(shù);
。2)正數(shù)和負(fù)數(shù)可以沒(méi)有算術(shù)平方根;
。3)任何實(shí)數(shù)的立方根只有唯一的一個(gè);
(4)正數(shù)的立方根與它本身和零同類(lèi)。
二、整式的運(yùn)算
1.整式范圍:
。1)整式可以化為分?jǐn)?shù)或整數(shù);
。2)整式可以化為負(fù)數(shù)或非負(fù)數(shù);
。3)整式可以化為奇數(shù)或偶數(shù);
。4)整式可以化簡(jiǎn)為分?jǐn)?shù)指數(shù)冪。
2.單項(xiàng)式:
。1)單項(xiàng)式的系數(shù)是數(shù)字因數(shù);
。2)一個(gè)單項(xiàng)式中所有字母的指數(shù)的和叫做單項(xiàng)式的次數(shù)。
3.多項(xiàng)式:
。1)多項(xiàng)式的每一項(xiàng)都是一個(gè)單項(xiàng)式;
。2)一個(gè)多項(xiàng)式的'項(xiàng)數(shù)與多項(xiàng)式中含有幾個(gè)單項(xiàng)式有關(guān)。
4.同底數(shù)冪的乘法:
。1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;
。2)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
5.冪的乘方:
冪的乘方,底數(shù)不變,指數(shù)相乘。
6.積的乘方:
(1)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘;
(2)1的乘方等于1。
7.同底數(shù)冪的除法:
(1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減;
。2)0的任何正整數(shù)次冪都是0。
8.分式:
。1)分式是整式的一種,在整式中區(qū)別于整式,分式的分母中必須含有字母;
(2)分式的值等于分子除以分母。
9.分式的運(yùn)算:
(1)分式的乘方:分式與分式相乘,再把被乘式的分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母;
。2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;
。3)分式的加減:異分母分式的加減運(yùn)算,為了使不同分母的分?jǐn)?shù)直接相加減不便,因此常把不同分母的分?jǐn)?shù)分別化成與原來(lái)的分母相同的分母后再相加減。
三、方程與方程組
1.方程:
。1)含有未知數(shù)的等式叫方程;
。2)使方程左右兩邊相等的未知數(shù)的值,叫做方程的解;
。3)求方程的解的過(guò)程叫做解方程。
2.方程的解:
。1)能使方程左右兩邊相等的未知數(shù)的值;
。2)一個(gè)數(shù)(它不一定是數(shù),也可以是符號(hào)和運(yùn)算)是某一等式(含有未知數(shù)的等式)的解,那么這個(gè)數(shù)就叫做該等式的解。
3.一元一次方程:
(1)只有一個(gè)未知數(shù);
。2)未知數(shù)的最高次數(shù)為1;
(3)整式方程。
4.方程的解法:
(1)去分母:在方程兩端同乘各分母的最小公倍數(shù);
。2)去括號(hào):去括號(hào)要變號(hào);
(3)移項(xiàng):把含有未知數(shù)的項(xiàng)移到等號(hào)的一邊,其他項(xiàng)移到另一邊;
。4)合并同類(lèi)項(xiàng):化未知數(shù)為已知數(shù);
(5)系數(shù)化成1:在方程兩端同除以未知數(shù)的系數(shù)。
5.列方程解應(yīng)用題
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 9
1.角的定義:有公共端點(diǎn)的兩條射線組成的圖形叫角。這個(gè)公共端點(diǎn)是角的頂點(diǎn),兩條射線為角的兩邊。
2.角有以下的'表示方法:
(1)用三個(gè)大寫(xiě)字母及符號(hào)“∠”表示.三個(gè)大寫(xiě)字母分別是頂點(diǎn)和兩邊上的任意點(diǎn),頂點(diǎn)的字母必須寫(xiě)在中間。
(2)用一個(gè)大寫(xiě)字母表示.這個(gè)字母就是頂點(diǎn).當(dāng)有兩個(gè)或兩個(gè)以上的角是同一個(gè)頂點(diǎn)時(shí),不能用一個(gè)大寫(xiě)字母表示。
(3)用一個(gè)數(shù)字或一個(gè)希臘字母表示.在角的內(nèi)部靠近角的頂點(diǎn)處畫(huà)一弧線,寫(xiě)上希臘字母或數(shù)字.如圖的兩個(gè)角,分別記作∠α、∠1。
3.以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進(jìn)制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。
4.角的平分線:一般地,從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成兩個(gè)相等的角的射線,叫做這個(gè)角的平分線。
5.如果兩個(gè)角的和等于90度(直角),就說(shuō)這兩個(gè)叫互為余角,即其中每一個(gè)角是另一個(gè)角的余角;如果兩個(gè)角的和等于180度(平角),就說(shuō)這兩個(gè)叫互為補(bǔ)角,即其中每一個(gè)角是另一個(gè)角的補(bǔ)角。
6.同角(等角)的補(bǔ)角相等;同角(等角)的余角相等。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 10
一、角的定義
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見(jiàn)考法
(1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的計(jì)算與度量。
誤區(qū)提醒
角的'度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
【典型例題】(2010云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )
【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度 ,本題選C.
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 11
一、平移變換:
1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。
2、性質(zhì):
。1)平移前后圖形全等;
。2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。
3、平移的作圖步驟和方法:
。1)分清題目要求,確定平移的方向和平移的距離。
(2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn)。
。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn)。
(4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母。
(5)寫(xiě)出結(jié)論。
二、旋轉(zhuǎn)變換:
1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。
說(shuō)明:
(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;
。2)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)中心始終保持不動(dòng)。
。3)旋轉(zhuǎn)過(guò)程中旋轉(zhuǎn)的方向是相同的。
(4)旋轉(zhuǎn)過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的'大小和形狀。
2、性質(zhì):
。1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
。2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
。3)旋轉(zhuǎn)前、后的圖形全等。
3、旋轉(zhuǎn)作圖的步驟和方法:
(1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;
。2)找出圖形的關(guān)鍵點(diǎn);
(3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來(lái),然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);
(4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。
說(shuō)明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。
4、常見(jiàn)考法
(1)把平移旋轉(zhuǎn)結(jié)合起來(lái)證明三角形全等;
。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。
誤區(qū)提醒
。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;
。2)平移與旋轉(zhuǎn)的性質(zhì)沒(méi)有掌握。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 12
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作。
2。導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的.斜率
、賙=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3。常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:
4。導(dǎo)數(shù)的四則運(yùn)算法則:
5。導(dǎo)數(shù)的應(yīng)用:
。1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
、偾髮(dǎo)數(shù);
②求方程的根;
③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
。3)求可導(dǎo)函數(shù)值與最小值的步驟:
、∏蟮母虎迅c區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 13
1、解直角三角形
銳角三角函數(shù)
銳角a的正弦、余弦和正切統(tǒng)稱(chēng)∠a的三角函數(shù)。
如果∠a是Rt△ABC的一個(gè)銳角,則有
銳角三角函數(shù)的計(jì)算
解直角三角形
在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過(guò)程,叫做解直角三角形。
2、直線與圓的位置關(guān)系
直線與圓的位置關(guān)系
當(dāng)直線與圓有兩個(gè)公共點(diǎn)時(shí),叫做直線與圓相交;當(dāng)直線與圓有公共點(diǎn)時(shí),叫做直線與圓相切,公共點(diǎn)叫做切點(diǎn);當(dāng)直線與圓沒(méi)有公共點(diǎn)時(shí),叫做直線與圓相離。
直線與圓的位置關(guān)系有以下定理:
直線與圓相切的判定定理:
經(jīng)過(guò)半徑的外端并且垂直這條半徑的直線是圓的切線。
圓的切線性質(zhì):
經(jīng)過(guò)切點(diǎn)的半徑垂直于圓的切線。
切線長(zhǎng)定理
從圓外一點(diǎn)作圓的切線,通常我們把圓外這一點(diǎn)到切點(diǎn)間的線段的長(zhǎng)叫做切線長(zhǎng)。
切線長(zhǎng)定理:過(guò)圓外一點(diǎn)所作的圓的兩條切線長(zhǎng)相等。
三角形的內(nèi)切圓
與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形的三條角平分線的交點(diǎn)。
3、三視圖與表面展開(kāi)圖
投影
物體在光線的照射下,在某個(gè)平面內(nèi)形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的.投射叫做平行投影。
可以把太陽(yáng)光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。
簡(jiǎn)單幾何體的三視圖
物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側(cè)投影面上的正投影叫做左視圖。
主視圖、左視圖和俯視圖合稱(chēng)三視圖。
產(chǎn)生主視圖的投影線方向也叫做主視方向。
由三視圖描述幾何體
三視圖不僅反映了物體的形狀,而且反映了各個(gè)方向的尺寸大小。
簡(jiǎn)單幾何體的表面展開(kāi)圖
將幾何體沿著某些棱“剪開(kāi)”,并使各個(gè)面連在一起,鋪平所得到的平面圖形稱(chēng)為幾何體的表面展開(kāi)圖。
圓柱可以看做由一個(gè)矩形ABCD繞它的一條邊BC旋轉(zhuǎn)一周,其余各邊所成的面圍成的幾何體。AB、CD旋轉(zhuǎn)所成的面就是圓柱的兩個(gè)底面,是兩個(gè)半徑相同的圓。AD旋轉(zhuǎn)所成的面就是圓柱的側(cè)面,AD不論轉(zhuǎn)動(dòng)到哪個(gè)位置,都是圓柱的母線。
圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉(zhuǎn)一周,它的其余各邊所成的面圍成的一個(gè)幾何體。直角邊BC旋轉(zhuǎn)所成的面就是圓錐的底面,斜邊AB旋轉(zhuǎn)所成的面就是圓錐的側(cè)面,斜邊AB不論轉(zhuǎn)動(dòng)到哪個(gè)位置,都叫做圓錐的母線。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 14
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長(zhǎng)a,b,c有這種關(guān)系,那么這個(gè)三角形是直角三角形。
3、勾股數(shù)
滿足的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。
常見(jiàn)的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。
二、證明
1、對(duì)事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180度。
(1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個(gè)角湊到一起組成一個(gè)平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內(nèi)角是互為補(bǔ)角。
3、三角形的外角與它不相鄰的內(nèi)角關(guān)系
(1)三角形的一個(gè)外角等于和它不相鄰的`兩個(gè)內(nèi)角的和。
(2)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
4、證明一個(gè)命題是真命題的基本步驟
(1)根據(jù)題意,畫(huà)出圖形。
(2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫(xiě)出已知、求證。
(3)經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程。在證明時(shí)需注意:①在一般情況下,分析的過(guò)程不要求寫(xiě)出來(lái)。②證明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 15
(一)運(yùn)用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
(三)因式分解
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過(guò)來(lái),就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
、夙(xiàng)數(shù):三項(xiàng)
②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的.符號(hào)相同。
③有一項(xiàng)是這兩個(gè)數(shù)的積的兩倍。
(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。
(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。
(五)分組分解法
我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納北師大版
一、多邊形
1、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。
2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。
3、多邊形的頂點(diǎn):多邊形每相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。
4、多邊形的對(duì)角線:連結(jié)多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。
5、多邊形的周長(zhǎng):多邊形各邊的長(zhǎng)度和叫做多邊形的周長(zhǎng)。
6、凸多邊形:把多邊形的任何一條邊向兩方延長(zhǎng),如果多邊形的其他各邊都在延長(zhǎng)線所得直線的問(wèn)旁,這樣的多邊形叫凸多邊形。
說(shuō)明:一個(gè)多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說(shuō)的多邊形,如果不特別聲明,都是指凸多邊形。
7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡(jiǎn)稱(chēng)多邊形的角。
8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做多邊形的外角。
注意:多邊形的外角也就是與它有公共頂點(diǎn)的內(nèi)角的鄰補(bǔ)角。
9、多邊形內(nèi)角和定理:n邊形內(nèi)角和等于(n-2)180°。
10、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。
說(shuō)明:多邊形的外角和是一個(gè)常數(shù)(與邊數(shù)無(wú)關(guān)),利用它解決有關(guān)計(jì)算題比利用多邊形內(nèi)角和公式及對(duì)角線求法公式簡(jiǎn)單。無(wú)論用哪個(gè)公式解決有關(guān)計(jì)算,都要與解方程聯(lián)系起來(lái),掌握計(jì)算方法。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 16
角:
。1)角的靜態(tài)定義:具有公共端點(diǎn)的兩條不重合的射線組成的圖形叫做角。
這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。
(2)角的動(dòng)態(tài)定義:一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。
所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開(kāi)始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號(hào):∠
角的種類(lèi):角的大小與邊的長(zhǎng)短沒(méi)有關(guān)系;角的大小決定于角的兩條邊張開(kāi)的程度,張開(kāi)的越大,角就越大,相反,張開(kāi)的`越小,角則越小。
在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。
角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。
以度、分、秒為單位的角的度量制稱(chēng)為角度制。此外,還有密位制、弧度制等。
(1)銳角:大于0°,小于90°的角叫做銳角。
(2)直角:等于90°的角叫做直角。
。3)鈍角:大于90°而小于180°的角叫做鈍角。
乘法:
乘法是指一個(gè)數(shù)或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說(shuō)成5個(gè)4連加。
乘法算式中各數(shù)的名稱(chēng):
“×”是乘號(hào),乘號(hào)前面和后面的數(shù)叫做因數(shù),“=”是等于號(hào),等于號(hào)后面的數(shù)叫做積。
例:10(因數(shù))×(乘號(hào))200(因數(shù))=(等于號(hào))2000(積)
平行:
在平面上兩條直線、空間的兩個(gè)平面或空間的一條直線與一平面之間沒(méi)有任何公共點(diǎn)時(shí),稱(chēng)它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。
垂直:
兩條直線、兩個(gè)平面相交,或一條直線與一個(gè)平面相交,如果交角成直角,叫做互相垂直。
平行四邊形:
在同一平面內(nèi)有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
梯形:
梯形是指一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形。
平行的兩邊叫做梯形的底邊,其中長(zhǎng)邊叫下底,短邊叫上底;也可以單純的認(rèn)為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。
除法:
除法法則:除數(shù)是幾位,先看被除數(shù)的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫(xiě)在哪位上面,不夠商一,0占位。余數(shù)要比除數(shù)小,如果商是小數(shù),商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對(duì)齊;如果除數(shù)是小數(shù),要化成除數(shù)是整數(shù)的除法再計(jì)算。
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié) 17
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對(duì)邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對(duì)邊相等且平行
(2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)
(3)平行四邊形的對(duì)角線互相平分
3、判定:
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形
(4)兩組對(duì)角分別相等的四邊形是平行四邊形
(5)對(duì)角線互相平分的四邊形是平行四邊形
4、對(duì)稱(chēng)性:平行四邊形是中心對(duì)稱(chēng)圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等
3、判定:
(1)有一個(gè)角是直角的平行四邊形叫做矩形
(2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對(duì)角線相等的平行四邊形是矩形
4、對(duì)稱(chēng)性:矩形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
(3)菱形被兩條對(duì)角線分成四個(gè)全等的直角xxx
(4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半
2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對(duì)角線互相垂直的平行四邊形是菱形
4、對(duì)稱(chēng)性:菱形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個(gè)角都是直角,四條邊都相等
(2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
(3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角xxx
(4)正方形的對(duì)角線與邊的夾角是45°
(5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角xxx
3、判定:
(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對(duì)稱(chēng)性:正方形是軸對(duì)稱(chēng)圖形也是中心對(duì)稱(chēng)圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形
4、對(duì)稱(chēng)性:等腰梯形是軸對(duì)稱(chēng)圖形
六、xxx的中位線平行于xxx的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);xxx的重心是三條中線的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對(duì)角線的條數(shù):
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)xxx
(2)n邊形共有n(n-3)/2條對(duì)角線
圓知識(shí)點(diǎn)、概念總結(jié)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形
4、圓是定點(diǎn)的距離等于定長(zhǎng)的'點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)
27、正xxx面積√3a/4a表示邊長(zhǎng)
28、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長(zhǎng)計(jì)算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35、弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
第二章整式的加減
2、1整式
1、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。系數(shù),單項(xiàng)式的次數(shù)、單項(xiàng)式指的是數(shù)或字母的積的代數(shù)式、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式、因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運(yùn)算關(guān)系,其也不是單項(xiàng)式、
2、單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);
3、單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和、
4、多項(xiàng)式:幾個(gè)單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式、每個(gè)單項(xiàng)式稱(chēng)項(xiàng),常數(shù)項(xiàng),多項(xiàng)式的次數(shù)就是多項(xiàng)式中次數(shù)的次數(shù)。多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),這里是次數(shù)項(xiàng),其次數(shù)是6;多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中,每一個(gè)單項(xiàng)式、特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號(hào)、
5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào)。
6、單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式。
2、2整式的加減
1、同類(lèi)項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)。與字母前面的系數(shù)(≠0)無(wú)關(guān)。
2、同類(lèi)項(xiàng)必須同時(shí)滿足兩個(gè)條件:
。1)所含字母相同;
(2)相同字母的次數(shù)相同,二者缺一不可、同類(lèi)項(xiàng)與系數(shù)大小、字母的排列順序無(wú)關(guān)
3、合并同類(lèi)項(xiàng):把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)。可以運(yùn)用交換律,結(jié)合律和分配律。
4、合并同類(lèi)項(xiàng)法則:合并同類(lèi)項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類(lèi)項(xiàng)的系數(shù)的和,且字母部分不變;
5、去括號(hào)法則:去括號(hào),看符號(hào):是正號(hào),不變號(hào);是負(fù)號(hào),全變號(hào)。
6、整式加減的一般步驟:
一去、二找、三合
。1)如果遇到括號(hào)按去括號(hào)法則先去括號(hào)
。2)結(jié)合同類(lèi)項(xiàng)
(3)合并同類(lèi)項(xiàng)葫蘆島
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1
(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0
若b2-4ac>0則有兩個(gè)不相等的實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac
若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式
(3)分解因式法
、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
、谶\(yùn)用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
、凼窒喑朔
2、銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對(duì)邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對(duì)邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對(duì)邊,即cotA=b/a;
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、兩角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
【數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
必修三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-05
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)10篇11-24
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)(10篇)11-24
歷史必修三知識(shí)點(diǎn)總結(jié)02-10
必修三化學(xué)知識(shí)點(diǎn)總結(jié)01-16
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)集錦10篇11-24
數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)匯編10篇11-24