關于高三數學知識點總結
總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,它可以幫助我們總結以往思想,發揚成績,為此我們要做好回顧,寫好總結。但是卻發現不知道該寫些什么,以下是小編精心整理的高三數學知識點總結,希望能夠幫助到大家。
高三數學知識點總結 1
三角函數。
注意歸一公式、誘導公式的正確性。
數列題。
1、證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函數,利用函數單調性很簡單
立體幾何題。
1、證明線面位置關系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系。
概率問題。
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2、搞清是什么概率模型,套用哪個公式;
3、記準均值、方差、標準差公式;
4、求概率時,正難則反(根據p1+p2+……+pn=1);
5、注意計數時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的.值為
2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。
高三數學知識點總結 2
1、數列的定義、分類與通項公式
(1)數列的定義:
①數列:按照一定順序排列的一列數。
②數列的項:數列中的每一個數。
(2)數列的分類:
分類標準類型滿足條件
項數有窮數列項數有限
無窮數列項數無限
項與項間的大小關系遞增數列an+1>an其中n∈N_
遞減數列an+1
常數列an+1=an
。3)數列的通項公式:
如果數列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數列的通項公式。
2、數列的遞推公式
如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an—1(n≥2)(或前幾項)間的.關系可用一個公式來表示,那么這個公式叫數列的遞推公式。
3、對數列概念的理解
(1)數列是按一定“順序”排列的一列數,一個數列不僅與構成它的“數”有關,而且還與這些“數”的排列順序有關,這有別于集合中元素的無序性。因此,若組成兩個數列的數相同而排列次序不同,那么它們就是不同的兩個數列。
(2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區別。
4、數列的函數特征
數列是一個定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N_)。
高三數學知識點總結 3
第一部分集合
。1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;
。2)注意:討論的時候不要遺忘了的情況。
第二部分函數與導數
1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。
2、函數值域的求法:①分析法;②配方法;③判別式法;④利用函數單調性;⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性(、、等);⑨導數法
3、復合函數的有關問題
。1)復合函數定義域求法:
、偃鬴(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出
、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。
。2)復合函數單調性的判定:
①首先將原函數分解為基本函數:內函數與外函數;
、诜謩e研究內、外函數在各自定義域內的單調性;
、鄹鶕巴詣t增,異性則減”來判斷原函數在其定義域內的單調性。
注意:外函數的定義域是內函數的值域。
4、分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5、函數的奇偶性
、藕瘮档亩x域關于原點對稱是函數具有奇偶性的'必要條件;
、剖瞧婧瘮;
⑶是偶函數;
、绕婧瘮翟谠c有定義,則;
⑸在關于原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;
(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;
1、對于函數f(x),如果對于定義域內任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數;
2、對于函數f(x),如果對于定義域內任意一個x,都有f(—x)=f(x),那么f(x)為偶函數;
3、一般地,對于函數y=f(x),定義域內每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關于點(a,b)成中心對稱;
4、一般地,對于函數y=f(x),定義域內每一個自變量x都有f(a+x)=f(a—x),則它的圖象關于x=a成軸對稱。
5、函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
6、由函數奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則—x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
高三數學知識點總結 4
等式的性質:
、俨坏仁降男再|可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
。1)a>bb
。2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
。4)c>0時,a>bac>bc
c<0時,a>bac
運算性質有:
。1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
。3)a>b>0an>bn(n∈N,n>1)。
。4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:“”和“”即推出關系和等價關系。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
、陉P于不等式的性質的考察,主要有以下三類問題:
。1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的.性質及實數的性質,函數性質,判斷實數值的大小。
。3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
高中數學集合復習知識點
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)—card(AB)
。1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1、集合元素具有①確定性;②互異性;③無序性
2、集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法
。3)集合的運算
①A∩(B∪C)=(A∩B)∪(A∩C)
、贑u(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n—1;
非空真子集數:2n—2
高三數學知識點總結 5
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的.集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
。1)它的平方等于—1,即i2=—1;
。2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
。3)i與—1的關系:i就是—1的一個平方根,即方程x2=—1的一個根,方程x2=—1的另一個根是—i。
。4)i的周期性:i4n+1=i,i4n+2=—1,i4n+3=—i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對于復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點總結 6
1、課前預習:首先上課前要做預習,課前預習能提前了解將要學習的知識。
2、記筆記:指的是課堂筆記,每節課時間有限,老師一般講的都是精華部分。
3、課后復習:通預習一樣,也是行之有效的方法。
4、涉獵課外習題:多涉獵一些課外習題,學習它們的解題思路和方法。
5、學會歸類總結:學習數學記得東西很多,如果單純的'記憶每個公式,不但增加記憶量而且容易忘。
6、建立糾錯本:把經常出錯的題目集中在一起。
7、寫考試總結:考試總結可以幫助找出學習之中不足之處,以及知識的薄弱環節。
8、培養學習興趣:興趣是最好的老師,只有有了興趣才會自主自發的進行學習,學習效率才會提高。
高三數學知識點總結 7
必修一
第一章:集合和函數的基本概念
這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的“并、補、交、非”也就解決了。
還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。
第二章:基本初等函數
——指數、對數、冪函數三大函數的運算性質及圖像
函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關于這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。
函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對于冪函數還要搞清楚當指數冪大于一和小于一時圖像的不同及函數值的大小關系,這也是?键c。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
第三章:函數的應用
這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關于證明零點的方法,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
必修二
第一章:空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。
第二章:點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的`要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。
關于這一章的內容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
第三章:直線與方程
這一章主要講斜率與直線的位置關系,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當直線垂直時斜率不存在的情況是考試中的?键c。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什么難點。
第四章:圓與方程
能熟練地把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
必修三
總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。
程序框圖與三種算法語句的結合,及框圖的算法表示,不要用常規的語言來理解,否則你會在這樣的題型中栽跟頭。
秦九韶算法是重點,要牢記算法的公式。
統計就是對一堆數據的處理,考試也是以計算為主,會從條形圖中計算出中位數等數字特征,對于回歸問題,只要記住公式,也就是個計算問題。
概率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函數
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恒等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
第二章:平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
第三章:三角恒等變換
這一章公式特別多,像差倍半角公式這類內容常會出現,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規律的,記憶的時候可以集合三角函數去記。
必修五
第一章:解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
第二章:數列
等差、等比數列的通項公式、前n項及一些性質常出現于填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細?荚囶}中,通項公式、前n項和的內容出現頻次較多,這類題看到后要帶有目的的去推導就沒問題了。
第三章:不等式
這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然后再根據實際問題的限制要求來求最值。
高三數學知識點總結 8
任一x=A,x=B,記做AB
AB,BAA=B
AB={x|x=A,且x=B}
AB={x|x=A,或x=B}
Card(AB)=card(A)+card(B)—card(AB)
。1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1、集合元素具有
①確定性;
、诨ギ愋裕
③無序性
2、集合表示方法
、倭信e法;
②描述法;
、垌f恩圖;
④數軸法
。3)集合的運算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的'性質
n元集合的字集數:2n
真子集數:2n—1;
非空真子集數:2n—2
高三數學知識點總結 9
、僬忮F各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。
、谡忮F的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形。
⑶特殊棱錐的頂點在底面的射影位置:
、倮忮F的側棱長均相等,則頂點在底面上的'射影為底面多邊形的外心。
、诶忮F的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。
、劾忮F的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心。
、芾忮F的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心。
、萑忮F有兩組對棱垂直,則頂點在底面的射影為三角形垂心。
、奕忮F的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。
、呙總四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
、嗝總四面體都有內切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑。
[注]:
i、各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個側面的等腰三角形不知是否全等)
ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。
簡證:AB⊥CD,AC⊥BD
BC⊥AD。令得,已知則。
iii、空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形。
iv、若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形。
簡證:取AC中點,則平面90°易知EFGH為平行四邊形
EFGH為長方形。若對角線等,則為正方形。
高三數學知識點總結 10
1、函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2、復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由“同增異減”判定;
3、函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的`對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
4、函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負”記憶;
(4)alogaN=N(a>0,a≠1,N>0);
8、判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10、對于反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個函數具有相同的單調性;
(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11、處理二次函數的問題勿忘數形結合
二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;
12、依據單調性
利用一次函數在區間上的保號性可解決求一類參數的范圍問題;
13、恒成立問題的處理方法
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
a(1)=a,a(n)為公差為r的等差數列
通項公式:
a(n)=a(n-1)+r=a(n-2)+2r=……=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、
可用歸納法證明。
n=1時,a(1)=a+(1-1)r=a。成立。
假設n=k時,等差數列的通項公式成立。a(k)=a+(k-1)r
則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、
通項公式也成立。
因此,由歸納法知,等差數列的通項公式是正確的。
求和公式:
S(n)=a(1)+a(2)+……+a(n)
=a+(a+r)+……+[a+(n-1)r]
=na+r[1+2+……+(n-1)]
=na+n(n-1)r/2
同樣,可用歸納法證明求和公式。
a(1)=a,a(n)為公比為r(r不等于0)的等比數列
通項公式:
a(n)=a(n-1)r=a(n-2)r^2=……=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、
可用歸納法證明等比數列的通項公式。
求和公式:
S(n)=a(1)+a(2)+……+a(n)
=a+ar+……+ar^(n-1)
=a[1+r+……+r^(n-1)]
r不等于1時,S(n)=a[1-r^n]/[1-r]
r=1時,S(n)=na、
同樣,可用歸納法證明求和公式。
高三數學知識點總結 11
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
、谝粋含有未知數的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
不等式的判定:
①常見的.不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
、谠诓坏仁健癮>b”或“a
③不等號的開口所對的數較大,不等號的尖頭所對的數較小;
、茉诹胁坏仁綍r,一定要注意不等式關系的關鍵字,如:正數、非負數、不大于、小于等等。
高三數學知識點總結 12
高三年級的教學工作已經結束,回顧一年來的工作有下面幾點體會,現總結如下:
統籌安排、合理計劃搞好全年復習工作學年初首先根據學生實際、學科特點、教學要求及考試說明制定了總體的復習計劃分為四個階段進行:
(1)系統復習階段(7個月左右);
第一階段復習的指導思想是:面向全體學生,抓好基礎,對知識點要抓死抓牢,而且要全面、細致、系統;抓知識的條理化、網絡化;抓解題過程的規范化。在這個階段應強調學生的主體作用,變傳統的“講—練—講”的復習模式為“見題思法――研究探討—檢測反饋—歸納評價”。遵循“以教師為主導,學生的主體,以練習、反饋、歸納為主線”的原則,同時圍繞教學目的的精心設計題組式的練習,注意充分調動學生的積極性,鼓勵學生主動參與、實踐。“見題思法――研究探討—檢測反饋—歸納評價”教學模式的程序是:
、、見題思法――創設問題情境,出示課前練習。學生對教師精心設計的幾道有代表性且難度不大的題目進行課前練習解答,以題為載體,反思用到的基礎知識和方法,進行初步歸納。
、谘芯刻接懆D―對教師精心設計的典型例題認真研究,師生共同研討,引導學生分析、嘗試和研究,鼓勵學生主動參與、實踐,積極發表自己的意見和見解,使知識、方法逐步深化,師生共同概括基礎知識和解題的通性、通法與技巧。
、蹤z測反饋――在前面環節的基礎上,學生利用所學知識方法進行鞏固性練習,自我檢測掌握的程度。
、軞w納評價――以整理筆記的方式對所學內容和方法作更深入、細致、系統的總結、歸納和分析,充分挖掘知識間的內存聯系,使知識系統化、條理化、網絡化,便于儲存,同時注意在今后的應用中求深化。
。2)專題復習階段(1個月左右);在這一階段要進行知識歸類、方法歸類,加強數學思想方法的訓練,著重提高解題能力,使學過的知識經過整理加工、融會貫通,起到知識升華的作用。根據近幾年來高考數學試題特點,瞄準六個解答大題所涉及十個知識塊:
1、函數的性質及其應用;
2、數列問題;
3、三角函數的圖象及性質;
4、平面向量;
5、不等式及其應用;
6、直線與圓錐曲線;
7、直線、平面、簡單的幾何體;
8、排列、組合及概率與統計;
9、極限、數學歸納法及導數的應用;
10、含參數的問題的取值范圍等十個知識塊進行重點復習。在復習過程中主要有兩個目的,其一是瞄準六個解答大題所涉知識點進行重點復習,確保知識點及技能落實到位;其二訓練解答題的書寫過程規范性要求,確保解答題過程不是分。
通過這一階段的訓練,可以使學生進一步加強對數學思想方法的理解和掌握。當然數學思想方法的掌握應當在平時上課時已經滲透,此階段的訓練所起的'作用是系統和強化的作用。
。3)強化訓練(綜合訓練)階段(1個月左右);本階段復習是鞏固前兩輪的復習效果,訓練應試技巧,提高應試心理素質,進行模擬強化訓練,其復習模式是:“練――查――講――悟――查”。
綜合練:用兩節課時間讓學生完成一套模擬題,套題的難度可逐漸加大,直至達到高考標準。
單元練:用一節課時間讓學生做完一套單元的選擇、填空題,題目帶有專題性,重點是知識上查缺補漏,突出強化思想方法。
查:自我評判。反思,找出需教師幫助的題目。
講:教師據大多數同學出現的問題,進行重點講評。
悟:讓學生課下重新整理,領悟此套題中的知識、方法及出現的各種問題。檢查:檢查上述復習效果,以便有針對性地進行后面的復習。
實施上述模式時,應遵循以下原則:
1、主體性原則。要充分調動學生學習的主動性和積極性,提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生找,方法與規律,讓學生歸納,教師的作用只是組織、監督、引導、促進學生主動積極思考、總結規律,使學生真正成為復習的評價,在動腦、動手的活動中,發展智力,提高能力。
2、反思性原則:學生做完題,一定要留出足夠的時間讓學生來反思、領悟,可從下面四個層次反思:
(1)經驗性反思:旨在總結每次練習后的基本經驗,著重反思這套題考查了哪些知識、能力?
。2)概括性反思:旨在同類問題篩選、概括,形成一種解題思路、解題方法,進而上升到一種數學思想,形成一種“數學化”意識;
。3)創造性反思:對習題的重新認識以及推廣、引申和發展。
。4)錯誤性反思:注重對答題失誤的糾正、辨析,搞清自己解題失誤或綜合能力性失誤,找失誤之因,謀成功之道。
總之,反思有助于弄清問題的實質,反思有助于提高鑒賞能力,知道什么是好的解法,反思可以養成抓住關鍵、直接剖析問題核心的好習慣,良好的題感正是通過反思總結培養起來的
3、針對性原則:題目設計要針對學生實際,針對高考要求的實際。
4、反饋性原則:一是教師等到學生學習效果的反饋,二是學生自己得到復習效果的反饋。以便加大教師調控力度,真正發揮教師的主導作用,學生能更大限度地利用自由支配時間在知識上查漏補缺,在能力上重點訓練,及時調整復習重點,采用恰當的方式進行有針對性的補救和矯正。
通過這一階段的訓練,學生可以大提高選擇題和填空題的正答率和熟練程度,可以縮短解題時間,提高解答選擇題和填空題的技巧性和靈活性。也可以提高解答題解題步驟的規范性,總結重點題型的解題思路和方法。培養學生嚴密思維的習慣,提高學生的綜合解題能力。
5、主動發展階段(20天左右):此階段教師不再講課,增大學生的自主權,可以復習任一學科,教師的作用主要是輔導(包括心理指導),并及時回答學生的問題。在此期間,學生采取的主要策略之一是“回顧”,它包括:知識回顧、方法回顧、疑點回顧、熱點回顧、結論回顧、題型回顧。對前面的復習再次查漏補缺,同時虛心接受教師、家長乃至社會各界的指導和關愛,這樣就能以最佳的身體狀態、心理狀態、知識狀態迎接高考的挑選。
高三數學知識點總結 13
復數的概念:
形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。
復數的表示:
復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實部,b叫復數的虛部。
復數的幾何意義:
(1)復平面、實軸、虛軸:
點Z的.橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數
(2)復數的幾何意義:復數集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數和它對應。
這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。
復數的模:
復數z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數的模,記為|Z|,即|Z|=
虛數單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數模的性質:
復數與實數、虛數、純虛數及0的關系:
對于復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。
高三數學知識點總結 14
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,有a-b0?;a-b=0?;a-b0?.
另外,若b0,則有1?;=1?;1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質
(1)對稱性:ab?;
(2)傳遞性:ab,bc?;
(3)可加性:ab?a+cb+c,ab,cd?a+cb+d;
(4)可乘性:ab,c0?acbc;ab0,cd0?;
(5)可乘方:ab0?(n∈N,n≥2);
(6)可開方:ab0?(n∈N,n≥2).
復習指導
1.“一個技巧”作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.
2.“一種方法”待定系數法:求代數式的'范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質求出目標式的范圍.
3.“兩條常用性質”
(1)倒數性質:
、賏b,ab0?;
②a0
、踑b0,0;
、0
(2)若ab0,m0,則
①真分數的性質:(b-m0);
高三數學知識點總結 15
考點一:集合與簡易邏輯
集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、“充要關系”、命題真偽的判斷、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。
考點二:函數與導數
函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的.性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區間、極值與最值等,通常以客觀題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恒成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。
考點三:三角函數與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是“新熱點”題型。
考點四:數列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查、在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬于中、高檔題目。
考點五:立體幾何與空間向量
一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
考點七:算法復數推理與證明
高考對算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”、考查的熱點是流程圖的識別與算法語言的閱讀理解、算法與數列知識的網絡交匯命題是考查的主流、復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學歸納法可能作為解答題的一小問。
【高三數學知識點總結】相關文章:
高三數學知識點總結04-27
高三數學知識點總結03-08
高三數學知識點總結06-12
高三數學復習知識點總結06-08
高三數學知識點總結08-24
高三數學復習知識點總結范文12-12
高三數學知識點歸納總結08-13
高三數學的知識點總結(精選13章)06-10
[優秀]高三數學知識點總結06-12