- 相關推薦
高一數學必修五知識點總結
總結是在某一特定時間段對學習和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經驗和教訓加以回顧和分析的書面材料,它可以有效鍛煉我們的語言組織能力,不妨讓我們認真地完成總結吧。總結你想好怎么寫了嗎?以下是小編精心整理的高一數學必修五知識點總結,歡迎閱讀與收藏。
高一數學必修五知識點總結1
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若{a}、為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.
、葘θ魏蝝、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
、、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那么當{a}為等差數列時,有:a+a+a+…=a+a+a+….
、使顬閐的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).
⑺如果{a}是等差數列,公差為d,那么,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)
、淘诘炔顢盗兄,從第一項起,每一項(有窮數列末項除外)都是它前后兩項的等差中項.
、彤敼頳>0時,等差數列中的數隨項數的增大而增大;當d
、卧Oa,a,a為等差數列中的'三項,且a與a,a與a的項距差之比=(≠-1),則a=.
、艛盗衶a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).
、圃诘炔顢盗衶a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.
、侨魯盗衶a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.
、热魞蓚等差數列{a}、的前n項和分別是S、T(n為奇數),則=.
⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).
、实炔顢盗衶a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.
、擞浀炔顢盗衶a}的前n項和為S.①若a>0,公差d0,則當a≤0且a≥0時,S小.
高一數學必修五知識點總結2
1.不等式的定義
在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號、、連接兩個數或代數式以表示它們之間的'不等關系,含有這些不等號的式子,叫做不等式。
2.比較兩個實數的大小
兩個實數的大小是用實數的運算性質來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質
(1)對稱性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開方:a0(nN,n2).
注意:
一個技巧
作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方。
一種方法
待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質求出目標式的范圍。
高一數學必修五知識點總結3
多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質
(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質:
(1)側棱交于一點。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的.斜高。
(2)多個特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數學必修五知識點總結4
函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:
(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。
(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。
(3)反函數法:利用函數f(x)與其反函數f-1(x)的'定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。
(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。
(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。
(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域。
(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。
高一數學必修五知識點總結5
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個集合是它本身的子集。A?A
、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同時 B?A 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 并 集 補 集
定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等于零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1
如果對于區間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的'單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2).奇函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特征
偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,并判斷其是否關于原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或借助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
【高一數學必修五知識點總結】相關文章:
高一數學必修知識點總結12-15
高一數學必修一知識點總結01-12
高一數學必修一知識點總結05-17
高一數學必修二知識點總結11-08
高一數學必修一知識點總結07-18
高一數學必修一知識點總結01-03
高一數學必修一知識點總結03-08
高一數學必修知識點總結15篇12-15
(熱門)高一數學必修一知識點總結06-15
高一數學必修知識點總結(15篇)12-15