- 相關推薦
[優選]高中數學的學習方法
在平平淡淡的日常中,大家都需要每天學習,吸收有用的知識。不過只有真正找對了學習方法,才能能事半功倍,還能培養學習的興趣。想要找到正確的學習方法?以下是小編收集整理的高中數學的學習方法,僅供參考,大家一起來看看吧。
高中數學的學習方法1
這門課我還是比較痛心的。其實從高一開始我的數學就不算好的,只能說還不錯,中等的水平吧。高三一年,考試挺多的,一直在130左右,最后幾次考試也都能到135的水平,可惜最后高考發揮真的很惡心,很失常,有一個題在考場上硬是沒想到怎么做,下來兩分鐘之后就會了。
我想說的是,其實我對數學,尤其是高中文科數學,覺得沒有多困難。知識點就是那些,考試也就是那么些題型。關鍵就看各位同學是不是真能踏踏實實搞清楚教材上的東西,能認真聽老師講課,講典型的題型,是不是能好好做作業,做一些其他的題,做高考真題,是不是能多思考,多研究一下這個題目的思路了。
教材,方法,做題,總結,思考,等等,都是至關重要的。題海戰術對數學,我相信是管用的,不過也得結合每個人自身情況來做。
教材至關重要!教材的重要性我都已經不想再提及了,實在是最基本的。作為一個學生,雖然教材也許會枯燥些,但是里面都是必須學好的東西。所有基礎差的同學,沒有別的可說的,都是,教材上的基礎概念,公式,例題,習題,所有的都必須搞懂,沒得偷懶,否則你會知道后果的!
如果說一個宏觀的我怎么學數學的話,那就是如下內容了。
從高一開始,我就有筆記本,這個是必需的。老師上課的板書從來沒有漏過一個知識點,沒有漏掉過一個例題,都記在筆記本上。而且一定要上課的時候就聽懂老師的思路,即使有不懂的,下課一定要去找老師提問。
筆記本上,基礎概念,公式,例題,老師讓我們課上做的題,都要記下來。其實目的很簡單,以后好復習,而且寫一遍有助于記憶。
下課之后,在每天做作業之前,我都會把筆記本拿出來先看一遍,今天主要什么知識,什么例題,主要的思路方法是什么,然后再去做作業。
其實作業里的很多題都不超出老師上課所涉及到的題型知識。有些確實難的,一定要自己先思考怎么做,實在做不出來就標注一下,拿答案來看。搞清楚自己到底卡在哪個地方了,然后把這個題當作一個典型記下來,當作一個方法的示例。
另外就是自己做的練習了。我當時每一門課都有一本輔導書。或者是中學教材全解或者是王后雄或者是其他的`,都是我自己親自到書店去挑的,自己覺得好才去買。我是以自己學習情況來做題的,會的題做一兩個就行了。如果是不會的,就一定會好好做,仔細研究題目整個的思路。后來發現考試里其實也就是很多見過的題型,方法都有共通之處。
高考復習,我就是很乖地跟著老師走。然后做老師的練習。然后自己做高考題,做別的模擬題。查缺補漏,多總結做題的方法。有些題型一開始我也不知道該怎么想,后來做多了,再加上老師一輪復習總結過方法,看看例題,自己慢慢就開竅了,看到之后也不會害怕了。
一定要有自信,不可以有抵觸心理,不可以厭惡一門科目,否則你絕對學不好。我并不喜歡數學,但是我為了高考是一定會把它好好學好的。得數學者得天下,這句話沒錯!
關于所有的考試和練習:
請大家珍惜每一次練習,考試。
這種時候都是對自己這一階段學習的一次檢查。是非常必要的,查缺補漏都靠這個了。
不要太過于在乎分數。
每次做完一定要找出自己的問題,是基礎不牢,還是粗心大意,還是方法沒有掌握等等。在困惑的時候一定要和老師好好交流。
一定記住,不要把問題歸結于什么心態不好,不在狀態這種虛無縹緲的原因上,一定要找到最基礎最根本的原因!否則你就永遠暈頭轉向,不知道該朝哪個方向努力!
關于作弊,提前查答案等等不誠實的行為。我只能說,出來混的,遲早要還的,不信的話,高考見吧。浪費掉的是你每次練習檢驗自己的機會,浪費掉的是自己這么多年來的學習,你自己的心里也會不安的!
在一輪復習中,老師會按照知識點復習。復習中,老師在課堂上會講一些經典的例題和一些必會的基礎題型。這些題型請大家務必做好做透,將它的方法吃透。上完課后做作業前,請大家把這些題再仔細看一遍,之后再開始做作業,事半功倍。
請大家在每個知識點結束時爭取將這個知識點的問題解決。不說難題都沒有問題,至少基本的概念,方法要會。
在做難題的時候,要注意方法。其實數學也是有方法可找的。就比如說解析幾何,橢圓這類型的題,是聯立還是點差法,在每次做完題后,根據題目設問的類型要進行反思和整理。
考試的時候,大家務必拿到的分,就是選擇除最后一道,填空除最后一道,大題的前幾道,這些題拿到了,上100肯定沒問題。那些難題,再提升提升,120以上應該是可以的。
做數學題一定要練速度,在做作業的時候也不要拖沓。但是記住數學用掉你多少時間都不過分,數學的確對于文科生來說挺重要的,如果你的文數學的好會非常沾光的。
上面是原來寫的,很簡略。現在就每個大的知識點談談我的看法。
函數:
這是最開始的一個內容。我高一學的也不能說有多好。考試分數也不算高,但是慶幸的是教材上的概念公式啥的搞得很清楚。所以在一輪復習的時候也就比較仔細去聽這個章節。
其實函數要求掌握的就是函數的性質以及幾個特別的函數。題型也都大同小異。我就是跟著老師的復習腳步走。我們的復習書是《步步高》,我按照老師要求先填好最前面的知識結構,然后看給出的例題以及解析,然后按照老師要求一個個去做題。不會的題就標出來,每次考試前就拿著這本書去復習。
像函數,我當時在學校,在家里,在外面的輔導機構,很多題型做了很多遍,很多經典的題型做了一遍又一遍,方法自然就很熟悉了。
導數:
這一塊看似很難。剛開始做大題的時候,導數大題永遠做不好,最后一問永遠不知道是什么方法,即使老師都已經教過幾次了。
后來就覺得,這樣下去不行,絕對不可以給自己設下限制,不能潛意識里覺得做不了,一定要試著去做。就從一個很普遍的求范圍的題下手了。看過去其實還是不敢下手去做,但后來就模仿老師的方法,將要求的那個a放到一邊,其他的都放到另外一邊。然后對另外一邊的式子求導,求范圍,進而求出a的范圍。后來這么一做發現,也不過如此,沒有難到哪里去。
后來就是在做題的時候,積極吸收老師講過的方法,結合題目的情況,多試幾次。哪怕這次做不對,就記下來,以后做的時候又多了一條思路。
[標簽:高考數學,數學學習方法,學習方法]
高中數學的學習方法2
1、針對各個板塊進行學習
高中數學總的來說可以分為立體幾何、函數、數列等13個知識版塊。學習的時候,應針對自己較弱的版塊,在某一段時間進行集中的強化訓練,從中掌握解這類題的基本思路和方法。
2、重視基礎題
高考的趨勢是淡化技巧,重視通法,很多時候一些數學基礎很好的同學因為犯了低級錯誤而拿不到高分。我們平時不能專找難題做,輕視基礎題,其實高考中為數不多的難題也就是若干個基礎題的組合。克服粗心毛病是每天堅持做一定量的.數學題,增加熟練程度,并且有意識地暗示自己集中注意力,提高正確率。
3、周期回顧錯題
很多過來人都推薦錯題本,這種方法很有效但不是適合所有人。同學們可以嘗試把所有做錯的題做上標記,一周抽一天把本周做錯的題再做一遍,避免再犯類似錯誤。錯題的回顧一定要按時而且要反復,這些前期的工作都推到高三可能時間會比較緊張。改錯本上可以沒有很多的題目,但是一定要有平時經常忽略的易錯點和容易思維斷點的知識點。
高中數學的學習方法3
一、基本知識
1.定義:
(1) .數列:按一定次序排序的一列數
(2) 等差數列:一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,則這個數列叫做等差數列
等比數列:一般地,如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,則這個數列叫做等比數列
寫作素材--美句仿寫
1.太陽無語,卻放射出光輝;高山無語,卻體現出巍峨。
藍天無語,卻顯露出高遠;大地無語,卻展示出廣博。
鮮花無語,卻散發出芬芳;青春無語,卻散發出活力。
2.什么樣的年齡最理想?鮮花說,開放的年齡千枝競秀。
什么樣的青春最輝煌?太陽說,燃燒的青春一片光芒。
什么樣的心靈最明亮?月亮說,純潔的心靈晶瑩透亮。
什么樣的人生最美好?海燕說,奮斗的人生快樂無窮。
3.我夢想:來到塞外的大漠,在夕陽的金黃中感受“長河落日圓”的壯麗。
我夢想:來到海邊的沙灘,從波濤的澎湃中感受“亂石穿空,驚濤拍岸,卷起千堆雪”的驚心動魄。
我夢想:來到白雪皚皚的高山,在朝陽的艷麗中,領略“紅裝素裹”的`分外妖嬈。
4.幸福是“臨行密密縫,意恐遲遲歸”的牽掛;
幸福是“春種一粒粟,秋收千顆子”的收獲;
幸福是“采菊東籬下,悠然見南山”的閑適;
幸福是“不畏浮云遮望眼,只緣身在最高層”的追求。
5.書是我的精神食糧,它重塑了我的靈魂。
簡愛說過:“我們是平等的,我不是無感情的機器”,我懂得了作為女性的自尊。
白朗寧說過:“拿走愛,世界將變成一座墳墓”,我懂得了為他人奉獻愛心是多么重要。
裴多菲說過:“生命誠可貴,愛情價更高。若為自由故,二者皆可拋”,我懂得了自由的價值。
魯迅說過:“不在沉默中爆發,就在沉默中滅亡”,我懂得了反抗精神的可貴。
每讀完一本書,我就完成了一次生命的感悟。
6.幸福是貧困中相濡以沫的一塊糕餅,
幸福是患難中心心相印的一個眼神;
幸福是父親一次粗糙的撫摸,
幸福是朋友一個溫馨的字條;
幸福是母親一聲溫柔的叮嚀,
幸福是老師一次親切的問候。
7.愛心是冬日里的一片陽光,使饑寒交迫的人分外感到人間的溫暖。
愛心是沙漠中的一泓泉水,使瀕臨絕境的人重新看到生活的希望。
愛心是夜空中的一輪明月,使孤苦無依的人即刻獲得心靈的慰藉。
愛心是春天里的一場細雨,使心靈枯萎的人特別感到情感的滋潤。
愛心是夏日里的一陣清風,使心急如焚的人感到無比的涼爽。
愛心是黑夜里的一座燈塔,使迷失方向的航船找到停靠的港灣。
8.假如生命是一株小草,我愿為春天獻上一點嫩綠。
假如生命是一棵大樹,我愿為大地(夏日)撒下一片綠陰(陰涼);
假如生命是一朵鮮花,我愿為世界奉上一縷馨香;
假如生命是一枚果實,我愿為人間留下一絲甘甜。
9.生命真是一個奇跡。
一枝從污泥里長出的夏荷,竟開出雪一樣潔白純凈的花兒;
一粒細細黑黑的螢火蟲,竟能在茫茫黑夜里發出星星般閃亮的光。
一株微不足道的小草,竟開出像海洋一樣湛藍的花;
一只毫不起眼的鳥兒,竟能在枝頭唱出遠勝小提琴的夜曲;
一條柔軟無骨的蚯蚓,居然能在堅實的土地里如魚在海中似的自由遨游。
10.大自然能給我們許多啟示:
滴水可以穿石,是在告訴我們做事應持之以恒;
大地能載萬物,是在告訴我們求學要廣讀博覽;
青松不懼風雪,是在告訴我們做人要堅毅剛強;
成熟的稻穗低著頭,那是在啟示我們要謙虛;
一群螞蟻抬走骨頭,那是在啟示我們要齊心協力。
11.人們都愛秋天,愛她的天高氣爽,愛她的云淡日麗,愛她的香飄四野。
人們都愛蓮花,愛她的亭亭玉立,愛她的不蔓不枝,愛她的香遠益清。
人們都愛春天,愛她的風和日麗,愛她的花紅柳綠,愛她的雨潤萬物。
12.古往今來,大凡有所建樹者。無不是臨淵之后退而結網者。
如果哥倫布只是“臨淵羨魚”,而不去辟風斬浪,揚帆遠航,他又怎么會有發現新大陸的壯舉?
如果哥白尼只是“臨淵羨魚”,而不去苦心觀測,創立新說,他又怎么會寫出《天體運行》這部巨著?
如果只是 “臨淵羨魚”,而不去開通絲綢之路,張騫怎會有通西域那鞍前的瀟灑?
如果只是“臨淵羨魚”,而不去開辟海上航線,鑒真又怎么會東海那水上風流?
高中數學的學習方法4
一、精做題
做題不是做得越多越好,而是做得越精越好。怎樣才算“精”呢?學會“解剖麻雀”。充分理解題意,注意分析題型,深化對題中每個條件的認識,看看與哪些數學基礎知識相聯系,做完題,還要針對自己做錯的題,分析自己當時想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的`做題經過和感想,以便挖掘出一些好的數學思維方法 高中數學;一題多解,一題多變,多元歸一。
二、做難題
取得黑龍江省高考文史類第三名好成績的李宏霞同學,認為堅持做難題,做大題才是制勝的法寶。她說,數學中的基礎題因然很重要,但高分的關鍵則是綜合性強、難度大的最后兩三道大題,即所謂“拉分題”。因此,她在復習時堅持有規律地做這類題目。由于題目難度高,所以每次做的題量不要太大,一次做四五道即可,同時,要注意選擇的題目要有代表性、要全面,同一題型的題選二三道即可,要注意方法的積累和運用。
三、天天做題
熟練解題一定要有量的積累。天天做題就是保證做題的數量的最好方法。同學們可以制定一個計劃,每天要求自己做五道題目,或十道題目,根據自己的情況確定,如此堅持下去,做題越做越快,并且培養起相當的自信心。
高中數學的學習方法5
一、知識特點的差異與變化
數學語言在抽象程度上突變;不少學生反映,集合、映射等概念難以理解,覺得離生活很遠,似乎很難理解。確實,初高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及抽象的集合語言、邏輯運算語言以及以后要學習到的函數語言、空間立體幾何等。
思維方法向理性層次躍遷;高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,分別確定了各自的思維套路。因此,初中學習中習慣于這種機械的,便于操作的定勢方式,而高中數學在思維形式上產生了很大的變化,正如上節所述,數學語言的抽象化對思維能力提出了更高要求。當然,能力的發展是漸進的,不是一朝一夕的事,這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。高一新生一定要能從經驗型抽象思維向理論型抽象思維過渡,最后還需初步形成辯證形思維。
知識內容劇增;初中數學知識少、淺、難度容易、知識面窄。高中數學知識廣泛,是對初中的數學知識推廣和引伸,也是對初中數學知識的完善。
二、學習方法與學習狀態
學習習慣因依賴心理而滯后。初中生在學習上的依賴心理是很明顯的第一,為提高分數,初中數學教學中教師將各種題型形成套路,學生依賴于教師為其提供套路;第二,父母盼子成材心切,回家后輔導也是常事。升入高中后,教師的教學方法變了,套路沒有了,家長輔導的能力跟不上了,由“參與學習”轉入“督促學習”。許多同學進入高中后,還象以前那樣,跟隨老師的這指揮棒運轉,沒有掌握學習的主動權。表現為無計劃,等上課,課前不預習,對老師要上課的內容不深刻理解,課堂忙記筆記,沒聽到分析,不會鞏固所學的知識。
思想松懈。有些同學把初中的那一套搬遷到高中來。他們認為自已在初中時并沒有用功學習,只是在中考前努力了幾個月就輕而易舉地考上了高中,而且有的可能還是尖子班,因而認為讀高中也不過如此,初始階段根本就用不著那么用功,只要等到高考前努力幾個月,也一樣會考上一所理想的大學的存有這種思想的同學是大錯而后特錯的因為目前中考題目并不具有很明顯的選撥性,同學們都很容易考得高分。但高考就不同了,目前我們國家的優秀大學還十分有限,因此高考的題目具有很強的選撥性,如果心存僥幸,想在高三時再發奮幾個月就考上大學,那到頭來你會后悔莫及的同學們不妨打聽打聽現在的高三,有多少同學就是因為開始時不努力學習,臨近高考了,發現自己缺漏了很多知識而焦急得到處請教。
學不得法。老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,還有些同學上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
不重視基礎。一些自我感覺良好的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,好高騖遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途卡殼。
進一步學習條件不具備。高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。如根分布與含參變量的討論,空間概念的形成,二次函數值域的求法,三角公式的變形與靈活運用,排列組合應用題及實際應用問題等。有的內容還是初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,就必然會跟不上高中學習的要求。
三、明確的學習目的與科學的學習措施
高中學生僅僅想學是不夠的,還必須“會學”,要講究科學的學習方法,提高學習效率,才能變被動學習為主動學習,才能提高學習成績。
良好的學習興趣;古人說過:“知之者不如好之者,好之者不如樂之者。”即說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?制定計劃使學習目的明確,時間安排合理,不慌不忙,穩打穩扎,它是推動我們主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。課前自學,對所學知識產生疑問,產生好奇心。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。及時復習是高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。獨立作業是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由“會”到“熟”。解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考。實在解決不了的要請教老師和同學,并要經常把易錯的地方拿來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、平面坐標系的的產生都是從實際生活中抽象出來的只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會準確。
建立良好的'學習數學習慣。習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。最重要的是,同學們要知道,學習是一個長期的鞏固舊知、發現新知的積累過程,決非一朝一夕可以完成的為什么高中要學幾年而不是幾天!許多許多的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
有意識培養自己的各方面能力;數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,例如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,譬如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”,對習題的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,為數學能力的培養開設好各種課型,在這些課型中,學生務必全身心投入、全方位智力參與,最終達到各方面能力的全面發展與提升。
四、學好數學的基本要求
記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到能從反面入手,深入理解正確東西;能由果索因,把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。記憶數學規律和數學小結論。與同學建立好關系,爭做“老師”,組成數學互助組。爭做數學課外題,加大自學力度。反復鞏固,消滅前學后忘。學會自主學習。
總之,閱讀、觀察、思維、記憶、練習等方法是相互聯系、相輔相成的,缺一不可。只要我們在教學中能依據學生實際,結合教材特點及教學大綱的要求,遵循教學規律和認識規律,創造有利于指導學生形成科學學習方法的情境,就會使各個環節的指導適合學生的學習,使學生不斷改進和完善自己的學習方法。只有學生想學、會學、樂學,才能把書本知識轉化為自己的知識,再把理論知識轉化為解決實際問題的能力,也才能大面積提高數學教學質量。并且我們應該永遠牢記這樣一句話:“興趣和信心是學好數學的最好的老師!”
高中數學的學習方法6
高中數學學習方法:其實就是學習解題
高中數學是應用性很強的學科,學習數學就是學習解題。搞題海戰術的方式、方法固然是不對的,但離開解題來學習數學同樣也是錯誤的。其中的關鍵在于對待題目的態度和處理解題的方式上。
1、首先是精選題目,做到少而精。
只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2、其次是分析題目。
解答任何一個數學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。
3、最后,題目總結。
解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:
①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。
④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。
【摘要】“高中數學多邊形內角和公式”數學公式是解題的要點,要靈活運用,希望下面公式為大家帶來幫助:
設多邊形的邊數為N
則其內角和=(N-2)*180°
因為N個頂點的N個外角和N個內角的和
=N*180°
(每個頂點的一個外角和相鄰的內角互補)
所以N邊形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N邊形的外角和等于360°
設多邊形的邊數為N
則其外角和=360°
因為N個頂點的N個外角和N個內角的和
=N*180°
(每個頂點的一個外角和相鄰的內角互補)
所以N邊形的內角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N邊形的內角和等于(N-2)*180°
如何學好數學
首先和敏捷對于來說固然重要,但良好的可以把效果提高幾倍,這是先天因素不可比擬的。學好首先要過的是關。任何事情都有一個由量變到質變的循序漸進的積累過程。
一.。不等于瀏覽。要深入了解內容,找出重點,難點,疑點,經過思考,標出不懂的,有益于抓住重點,還可以培養自學,有時間還可以超前學習。
二.聽講。核心在。1。以聽為主,兼顧記錄。2。注重過程,輕結論。
3.有重點。4。提高聽課。
三.。像演電影一樣把課堂,整理筆記,
四.多做練習。1。晚上吃飯后,坐到書桌時,看數學最適合,2。做一道數學題,每一步都要多問個別為什么,不能只滿足于課堂上的灌輸式傳授和書本上的簡單講述,要想提高必須要一步一步推 高中歷史,一步一步想,每個過程都必不可少,3。不要粗心大意,4。做完每一道題,要想想為什么會想到這樣做,建立一種條件發射,關鍵在于每做一道題要從中得到東西,錯在哪,5。解題都有固定的套路。6還有大膽的夸獎自己,那是樹立信心的關鍵時刻,
五.總結。1。要將所學的知識變成知識網,從大主干到分枝,清晰地深存在腦中,新題想到老題,從而一通百通。2。建立錯誤集,錯誤多半會錯上兩次,在有意識改正的情況下,還有可能錯下去,最有效的應該是會正確地做這道題,并在下次遇到同樣情況時候有注意的意識。3。周末再將一周做的題回頭看一番,提出每道題的思路方法。4有問題一定要問。
六.考前復習,1。前2周就要開始復習,做到心中有數,否則會影響發揮,再做一遍以前的錯題是十分必要的,據說有一個同學平時只有一百零幾,離只有一個月,把以前錯題從頭做一遍,最后他數學居然得了147分。2。要重視基礎,
另外,聽老師的話,勤學苦練不可少,沒有捷徑,要樂觀,有毅力,要有決心,還要有耐心,學數學是一個很長的過程,你的努力于回報往往不能那么盡如人意的成正比,甚至會有下坡路的趨勢,但只要堅持下去,那條成績線會抬起頭來,一定能看到光明。
《希臘文集》中的方程問題
《希臘文集》是一本用詩歌寫成的問題集,主要是六韻腳詩。荷馬著名的長詩《伊麗亞特》和《奧德賽》就是用這種詩體寫成的。
《希臘文集》中有一道關于畢達哥拉斯的問題。畢達哥拉斯是古希臘著名數學家,生活在公元前六世紀。問題是:一個人問:“尊敬的畢達哥拉斯,請告訴我,有多少學生在你的學校里聽你講課?”畢達哥拉斯回答說:“一共有這么多學生在聽課,其中 在學習數學, 學習音樂, 沉默無言,此外,還有3名婦女。”
我們用現代方法來解:設聽課的學生有x人,根據題目條件可列出方程
這是一個一元一次方程。
移項,得
答:畢達哥拉斯有28名學生聽課。
《希臘文集》中還有一些用童話形式寫成的數學題。比如“驢和騾子馱貨物”這道題,就曾經被大數學家歐拉改編過。題目是這樣的:
“驢和騾子馱著貨物并排走在路上。驢不住地往地埋怨自己馱的貨物太重,壓得受不了。騾子對驢說:‘你發什么牢騷啊!我馱得的貨物比你重。假若你的貨物給我一口袋,我馱的貨就比你馱的重一倍,而我若給你一口袋,咱倆馱和的才一樣多。’問驢和騾子各馱幾口袋貨物?”
這個問題可以用方程組來解:
設驢馱x口袋,騾子馱y口袋。則驢給騾子一口袋后,驢還剩x-1,騾子成了y+1,這時騾子馱的是驢的二倍,所以有
2(x-1)=y+1 (1)
又因為騾子給驢一口袋后,騾子還剩下y-1,驢成了x+1,此時騾子和驢馱的相等,有
x+1=y-1 (2)
(1)與(2)聯立,有
這是一個二元一次議程組。
(1)-(2)得 x-3=2,
x=5 (3)
將(3)代入(2),得y=7。
答:驢原來馱5口袋,騾子原來馱7口袋。
《希臘文集》有一道名的題目“愛神的煩惱”。這里有許多神的名字,先介紹一下:愛羅斯是希臘神話中的愛神,吉波莉達是賽浦路斯島的'守護神。9位文藝女神中,葉芙特爾波管簡樂,愛拉托管愛情詩,達利婭管吉劇,特希霍拉管舞蹈,美利波美娜管悲劇,克里奧管歷史,波利尼婭管頌歌,烏拉尼婭管天文,卡利奧帕管史詩。
這道題也是用詩歌形式寫在的:
愛羅斯在路旁哭泣,
淚水一滴接一滴。
吉波莉達向前問道:波利尼
“是什么事情使你如此傷悲?
我可能夠幫助你?”
愛羅斯回答道:
“九位文藝女神
不知來自何方
把我從赫爾康山采回的蘋果,
幾乎一掃而光,
葉芙特爾波飛快地搶走十二分之一,
愛拉托搶得更多——
七個蘋果中拿走一個。
八分之一被達利婭搶走,
比這多一倍的蘋果落入特希霍拉之手。
美利波美娜最是客氣,
只取走二十分之一。
可又來了克里奧,
她的收獲比這多四倍。
還有三位女神,
個個都不空手,
30個歸波利尼婭,
120個歸烏拉尼婭,
300個歸卡利奧帕。
我,可憐的愛羅斯。
愛羅斯原有多少個蘋果?還剩下50個蘋果。”
設愛羅斯原來有x個蘋果,則6位文藝女神搶走的蘋果分別是 。
可列出方程
答:愛羅斯原來有蘋果3360個。
選自《中學生數學》20xx年5月下
20xx高考數學復習三步曲
編者按:小編為大家收集了“20xx高考數學復習三步曲”,供大家參考,希望對大家有所幫助!
今年高考文理科的數學試卷總體難度不大,為師生所接受。文科試卷難易程度適中,尤其是填空題和選擇題難度不大,解答題難易程度和試題坡度安排都比較合理,有利于考生的發揮,也有利于指導以后的學習。
理科試卷容易題、中等題和難題比例恰當,注重邏輯思維能力和表達能力(運用數學符號)以及數形結合能力的考查,部分試題新而不難,開放題有所體現,把能力的考查落到實處。但我個人認為,今年試卷對高中數學的主干知識的核心內容考查不到位,但不等于我們今后可以完全不重視。
抓基礎:不變應萬變
把基礎知識和基本技能落到實處。唯有如此才能以不變應萬變。比如,文科第22題是一道經典題型,考查圓錐曲線上一點到定點距離,既考老師又考學生。所謂考老師是說這樣的題型你講過沒有,是怎么講的?學生的典型錯誤(以定點為圓心作一個與橢圓相切的圓,再利用判別式等于0)是怎么糾正?正確解法(轉化為二次函數在某個區間上的最值)是怎么想到的?只有經過這樣的教學環節,學生才能真正理解。所謂考學生是說你自己做錯了,老師重點講評了的經典問題,你掌握了沒有?掌握的標準是能否順利解答相應的變式問題。由于第(3)含有參數,需要分類討論,能有效甄別考生的思維水平和運算能力。本題以橢圓(解析幾何重點內容之一)為載體,考查把幾何問題轉化為代數問題的能力(這是解析幾何的核心思想),以及含參數的二次函數求最值問題(也是代數中的重點和難點),一舉多得。
當然,可能會有人認為這道題形式不新,其實,要求考題全新既無必要,也不可能,只要有利于高校選拔和中學教學就好,不必過分求新、求異。
理科的第22題相對較難,不少同學反映不好表述。若能從集合的包含關系這個角度考慮,則容易表述,部分考生是直接對兩個數列進行分類,由于要用到一些多數學生不熟悉的整除知識,因而感到困難,無法下手。這就體現基礎知識和基本技能的重要性。
盡管今年理科試卷在知識點分布上有些不盡如人意,但復習不能受此影響,仍然要全面、扎實復習,不能留下知識點的死角,相應的技能、技巧要牢固掌握,思想方法都要總結到位,這樣才能“不管風吹浪打,勝似閑庭信步”。
破難題:提升應對力
如何應對“題梗阻”?考試中遇到不會做的題目很正常,有些同學會因此影響臨場發揮。考生進考場就像運動員進運動場,心理素質很重要,把心理輔導和答題技巧融于學習之中。在高三復習過程中,不僅要講數學知識,同時還要訓練學生的心理素質和培養學生的答題技巧,這樣才能使學生在考場上應付裕如,出色發揮,考出好成績。
理科的22題第(2)卡住不少考生,耽誤時間還影響心情,以致第(3)和后面第23題來不及或無心去做,其實,做第(3)題用不到第(2)的結論。而第23題是新編的開放性問題,首先要靜心才能讀懂題目,而讀懂題目至少第(1)、(2)兩題不難。要做到這些并不容易,不是臨考前“先易后難”一句話學生就能做到,需要在平時教學過程中結合具體問題,訓練學生的心理素質,提高其在解題過程中遇到困難時的應變能力,掌握應變策略,才能在考場上“敢于放棄”,從容跳過不會做的題或在解答題中跳步解答,把自己能做的題目先做對,把應得的分得到,這樣考試總是成功的,無論分數高低。
為何時間與成績不成正比?高三數學就是大量解題,有些重點中學的優秀學生的高考成績甚至不比高二時考分高,豈不是白學?其實,這是誤解。數學講究邏輯,問題從哪里來(已知),到哪里去(求證),中間有哪些溝溝坎坎(思維障礙),怎么克服(怎樣進行等價轉化),不僅是照葫蘆畫瓢的操作性(當然也是必要的)訓練,更重要的是以數學知識為載體,讓學生學會思考問題的方式方法,還要在解題后對問題作歸納總結,找出規律,有時還要把問題作適當推廣,把學生的邏輯思維引到辯證思維。這樣經過一年的高三數學學習,學生收獲的不僅是分數,還有對人終生受用的思維品質的提高。
重方法:培養好品質
有些同學做了許多題,就是成績提高不見提高,自己和家長都很納悶。其實學習數學關鍵是要掌握方法,同時還要培養敢于做難題、新題的膽量和毅力。重復性操作的題目做再多,意義也不大。對待難題的態度是培養學生意志品質的好時機,不能輕易錯過(當然也要因人而異)。有些同學往往認為只要弄懂思路,不必解到底。其實,這樣的同學往往眼高手低,會而不對,考試成績忽高忽低,原因在于某些細節處理不當,造成“一失足成千古恨”,事后以粗心搪塞過去。這就需要老師對學生深入了解,結合具體問題給予悉心指導,幫助學生找出真實原因,并制定改正錯誤的辦法,這一過程表面上是幫助學生學會解題,實際上對學生意志品質的培養也就潛移默化地得到了落實。
我們有理由相信,把解題和人的素質培養有機結合的高三數學教學,不僅能提高學生的解題能力,還能促使他們健康成長,讓我們一起努力!
以上就是為大家提供的“20xx高考數學復習三步曲”希望能對考生產生幫助,更多資料請咨詢中考頻道。
生物數學概論
生物數學是生物學與數學之間的邊緣學科。它以數學方法研究和解決生物學問題,并對與生物學有關的數學方法進行理論研究。
生物數學的分支學科較多,從生物學的應用去劃分,有數量分類學、數量遺傳學、數量生態學、數量生理學和生物力學等;從研究使用的數學方法劃分,又可分為生物統計學、生物信息論、生物系統論、生物控制論和生物方程等分支。這些分支與前者不同,它們沒有明確的生物學研究對象,只研究那些涉及生物學應用有關的數學方法和理論。
生物數學具有豐富的數學理論基礎,包括集合論、概率論、統計數學、對策論、微積分、微分方程、線性代數、矩陣論和拓撲學,還包括一些近代數學分支,如信息論、圖論、控制論、系統論和模糊數學等。
由于生命現象復雜,從生物學中提出的數學問題往往十分復雜,需要進行大量計算工作。因此,計算機是研究和解決生物學問題的重要工具。然而就整個學科的內容而論,生物數學需要解決和研究的本質方面是生物學問題,數學和電腦僅僅是解決問題的工具和手段。因此,生物數學與其他生物邊緣學科一樣通常被歸屬于生物學而不屬于數學。
生命現象數量化的方法,就是以數量關系描述生命現象。數量化是利用數學工具研究生物學的前提。生物表現性狀的數值表示是數量化的一個方面。生物內在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現性狀,依據性狀本身的生物學意義,用適當的數值予以描述。
數量化的實質就是要建立一個集合函數,以函數值來描述有關集合。傳統的集合概念認為一個元素屬于某集合,非此即彼、界限分明。可是生物界存在著大量界限不明確的模糊現象,而集合概念的明確性不能貼切地描述這些模糊現象,給生命現象的數量化帶來困難。1965年扎德提出模糊集合概念,模糊集合適合于描述生物學中許多模糊現象,為生命現象的數量化提供了新的數學工具。以模糊集合為基礎的模糊數學已廣泛應用于生物數學。
數學模型是能夠表現和描述真實世界某些現象、特征和狀況的數學系統。數學模型能定量地描述生命物質運動的過程,一個復雜的生物學問題借助數學模型能轉變成一個數學問題,通過對數學模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關結論,達到對生命現象進行研究的目的。
比如描述生物種群增長的費爾許爾斯特-珀爾方程,就能夠比較正確的表示種群增長的規律;通過描述捕食與被捕食兩個種群相克關系的洛特卡-沃爾泰拉方程,從理論上說明:農藥的濫用,在毒殺害蟲的同時也殺死了害蟲的天敵,從而常常導致害蟲更猖獗地發生等。
還有一類更一般的方程類型,稱為反應擴散方程的數學模型在生物學中廣為應用,它與生理學、生態學、群體遺傳學、醫學中的流行病學和藥理學等研究有較密切的關系。60年代,普里戈任提出著名的耗散結構理論,以新的觀點解釋生命現象和生物進化原理,其數學基礎亦與反應擴散方程有關。
由于那些片面的、孤立的、機械的研究方法不能完全滿足生物學的需要,因此,在非生命科學中發展起來的數學,在被利用到生物學的研究領域時就需要從事物的多方面,在相互聯系的水平上進行全面的研究,需要綜合分析的數學方法。
多元分析就是為適應生物學等多元復雜問題的需要、在統計學中分化出來的一個分支領域,它是從統計學的角度進行綜合分析的數學方法。多元統計的各種矩陣運算,體現多種生物實體與多個性狀指標的結合,在相互聯系的水平上,綜合統計出生命活動的特點和規律性。
生物數學中常用的多元分析方法有回歸分析、判別分析、聚類分析、主成分分析和典范分析等。生物學家常常把多種方法結合使用,以期達到更好的綜合分析效果。
多元分析不僅對生物學的理論研究有意義,而且由于原始數據直接來自生產實踐和科學實驗,有很大的實用價值。在農、林業生產中,對品種鑒別、系統分類、情況預測、生產規劃以及生態條件的分析等,都可應用多元分析方法。醫學方面的應用,多元分析與電腦的結合已經實現對疾病的診斷,幫助醫生分析病情,提出治療方案。
系統論和控制論是以系統和控制的觀點,進行綜合分析的數學方法。系統論和控制論的方法沒有把那些次要的因素忽略,也沒有孤立地看待每一個特性,而是通過狀態方程把錯綜復雜的關系都結合在一起,在綜合的水平上進行全面分析。對系統的綜合分析也可以就系統的可控性、可觀測性和穩定性作出判斷,更進一步揭示該系統生命活動的特征。
在系統和控制理論中,綜合分析的特點還表現在把輸出和狀態的變化反饋對系統的影響,即反饋關系也考慮在內。生命活動普遍存在反饋現象,許多生命過程在反饋條件的制約下達到平衡,生命得以維持和延續。對系統的控制常常靠反饋關系來實現。
生命現象常常以大量、重復的形式出現,又受到多種外界環境和內在因素的隨機干擾。因此概率論和統計學是研究生物學經常使用的方法。生物統計學是生物數學發展最早的一個分支,各種統計分析方法已經成為生物學研究工作和生產實踐的常規手段。
概率與統計方法的應用還表現在隨機數學模型的研究中。原來數學模型可分為確定模型和隨機模型兩大類如果模型中的變量由模型完全確定,這是確定模型;與之相反,變量出現隨機性變化不能完全確定,稱為隨機模型。又根據模型中時間和狀態變量取值的連續或離散性,有連續模型和離散模型之分。前述幾個微分方程形式的模型都是連續的、確定的數學模型。這種模型不能描述帶有隨機性的生命現象,它的應用受到限制。因此隨機模型成為生物數學不可缺少的部分。
60年代末,法國數學家托姆從拓撲學提出一種幾何模型,能夠描繪多維不連續現象,他的理論稱為突變理論。生物學中許多處于飛躍的、臨界狀態的不連續現象,都能找到相應的躍變類型給予定性的解釋。躍變論彌補了連續數學方法的不足之處,現在已成功地應用于生理學、生態學、心理學和組織胚胎學。對神經心理學的研究甚至已經指導醫生應用于某些疾病的臨床治療。
繼托姆之后,躍變論不斷地發展。例如塞曼又提出初級波和二級波的新理論。躍變理論的新發展對生物群落的分布、傳染疾病的蔓延、胚胎的發育等生物學問題賦予新的理解。
上述各種生物數學方法的應用,對生物學產生重大影響。20世紀50年代以來,生物學突飛猛進地發展,多種學科向生物學滲透,從不同角度展現生命物質運動的矛盾,數學以定量的形式把這些矛盾的實質體現出來。從而能夠使用數學工具進行分析;能夠輸入電腦進行精確的運算;還能把來自名方面的因素聯系在一起,通過綜合分析闡明生命活動的機制。
總之,數學的介入把生物學的研究從定性的、描述性的水平提高到定量的、精確的、探索規律的高水平。生物數學在農業、林業、醫學,環境科學、社會科學和人口控制等方面的應用,已經成為人類從事生產實踐的手段。
數學在生物學中的應用,也促使數學向前發展。實際上,系統論、控制論和模糊數學的產生以及統計數學中多元統計的興起都與生物學的應用有關。從生物數學中提出了許多數學問題,萌發出許多數學發展的生長點,正吸引著許多數學家從事研究。它說明,數學的應用從非生命轉向有生命是一次深刻的轉變,在生命科學的推動下,數學將獲得巨大發展。
當今的生物數學仍處于探索和發展階段,生物數學的許多方法和理論還很不完善,它的應用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復雜的生物學問題至今未能找到相應的數學方法進行研究。因此,生物數學還要從生物學的需要和特點,探求新方法、新手段和新的理論體系,還有待發展和完善。
20xx年高考數學命題預測之立體幾何
【編者按】近幾年高考立體幾何試題以基礎題和中檔題為主,熱點問題主要有證明點線面的關系,如點共線、線共點、線共面問題;證明空間線面平行、垂直關系;求空間的角和距離;利用空間向量,將空間中的性質及位置關系的判定與向量運算相結合,使幾何問題代數化等等。考查的重點是點線面的位置關系及空間距離和空間角,突出空間想象能力,側重于空間線面位置關系的定性與定量考查,算中有證。其中選擇、填空題注重幾何符號語言、文字語言、圖形語言三種語言的相互轉化,考查學生對圖形的識別、理解和加工能力;解答題則一般將線面集中于一個幾何體中,即以一個多面體為依托,設置幾個小問,設問形式以證明或計算為主。
20xx年高考中立體幾何命題有如下特點:
1.線面位置關系突出平行和垂直,將側重于垂直關系。
2.多面體中線面關系論證,空間“角”與“距離”的計算常在解答題中綜合出現。
3.多面體及簡單多面體的概念、性質多在選擇題,填空題出現。
4.有關三棱柱、四棱柱、三棱錐的問題,特別是與球有關的問題將是高考命題的熱點。
此類題目分值一般在17---22分之間,題型一般為1個選擇題,1個填空題,1個解答題
高中數學的學習方法7
一、“棄重求輕”,培養興趣:女生數學能力的下降,環境因素及心理因素不容忽視。目前社會、家庭、學校對學生的期望值普遍過高。而女生性格較為文靜、內向,心理承受能力較差,加上數學學科難度大,因此導致她們的數學學習興趣淡化,能力下降。
二、“笨鳥先飛”,強化預習:要提高課堂學習過程中的數學能力,課前的預習至關重要。教學中,要有針對性地指導女生課前的預習,可以編制預習提綱,對抽象的概念、邏輯性較強的推理、空間想象能力及數形結合能力要求較高的內容,要求通過預習有一定的'了解,便于聽課時有的放矢,易于突破難點。認真預習,還可以改變心理狀態,變被動學習為主動參與。
三、“開門造車”,注重方法。
教師要指導女生“開門造車”,讓她們暴露學習中的問題,有針對地指導聽課,強化雙基訓練,對綜合能力要求較高的問題,指導她們學會利用等價轉換、類比、化歸等數學思想,將問題轉化為若干基礎問題,還可以組織她們學習他人成功的經驗,改進學習方法,逐步提高能力。
四、“揚長補短”,增加自信:教學中要注意發揮女生的長處,增加其自信心,使其有正視挫折的勇氣和戰勝困難的決心。特別要針對女生的弱點進行教學,多講通解通法和常用技巧,注意速度訓練,分析問題既要“由因導果”,也要“執果索因”,暴露過程,激活思維;注重數形結合,適當增加直觀教學,訓練作圖能力,培養想象力;揭示實際問題的空間形式和數量關系,培養“建模”能力。
高中數學的學習方法8
一、高中數學快速提分的方式
1、背概念、公式、定理、圖像
如果你現在是三四十分的話,你第一件事就是要背上面的這些,現在跟著老師走一輪,那么要把老師提到過的每一個概念,公式定理與圖像都背下來,剛開始會很辛苦,畢竟高中數學的一些概念還是比較抽象的,但是小數老師告訴你,你背一段時間后,你會有很明顯的變化的!
要求:每個概念公式定理圖像都要背下來哦,你可以找你同桌提問你,比如,提問函數,你要知道函數的概念,函數的相關性質都有哪些,這些性質的概念又是什么等。現在你可以不理解,但必須滾瓜爛熟!
注:這是最痛苦的一個階段哦,加油!
2、背例題老師上課會講一些例題,那第二步就是要把這個例題背下來,包括題目條件,求解與解法。
達標要求:你能合上課本,自己寫出題目條件與求解,并能默寫出步驟來!要找到題目中的關鍵詞,也就是題眼,也就是你之前背的概念公式定理圖像中的出現的那些詞,這才是題眼!因為解題的時候,我們的解題思路從哪來,就是從我們學過的知識轉化過來的!
注:這一步相對上一步來說,簡單了一點,因為題目是具體的,不抽象,背起來稍微容易一點!但是要注意抓住重點,那就是例題中的題眼!不要只記里面的數字啊,否則,數字換一下,你就不會做了!
3、對例題的每一步轉化寫上來龍去脈
例題背下來之后,你也能分辨出題目的題眼了,也會了解題步驟了,接下來就要調動你的大腦來思考了!你要把每一步涉及到的公式概念都寫出來,比如:求函數的定義域,你記過求定義域的方法,那讓你求的定義域時,首先是二次根號下被開放式必須大于等于0,所以有lgx大于等于0,又因為這是一個對數函數,想一想對數函數的圖象,找到函數值大于等于0對應的x值就是此函數的定義域了!
要求:每一步都要弄清楚,你不知道轉化的,一定要問,此時可以不計較數量,重視質量就可以了!這個質量是你自己真正能寫出來了!
注:數學題邏輯思維比較強,一定要分析每一步,不要感覺自己會了,就不寫了!
4、重新做例題(不是把答案背上去哦)
你弄明白之后,接下來就是要真正把他當做一道新題去做了,你完全按照做新題的方法,審題,找到題眼,然后想一想這些題眼該怎么轉化,以前自己學過的知識怎么運用,不同知識之間怎么結合,然后一步步的去做這道題,在做題的過程中,還要注意計算的易錯點!
二、鞏固數學基礎的方式
首先課堂緊跟老師,認真聽每一節課,記好課堂筆記,有些學生喜歡自己課后自學,課堂不愛聽講,這是極錯誤的,因為老師對于高考的`了解和對知識的掌握,遠遠勝過我們自學,緊跟老師是打好基礎最關鍵的一步。
對課本基礎知識的學習,我們強烈建議大家使用思維導圖,可以把課本上的知識都畫成樹狀層,這樣更容易理解、記憶,這樣知識點不再是孤立而是成了一個網,這比光看書效果要好很多很多。
此外,想學好數學,大量刷題確實很有必要,但你真的會刷題嗎?多數同學雖然也做了大量的題目,但成績還是不好,核心原因就是做題忽略了最重要的一步,那就是總結反思。每做完一道題目,大家還需要總結一下,問一下自己下面這些問題:它考查了哪些知識、自己有沒有掌握、題目的解題思路在哪里、突破口是什么、屬于哪種題型、此類題型有什么共同的套路、此類題型應該用什么方法來解答。只有多問自己幾個為什么,你才能真正吃透一道題,達到做一道題會一類題。
做題并不是越多越好,要知道題海戰術只是手段,我們最終的目的還是通過做題加深對知識的理解,掌握解題套路,提高做題速度,如果做題不總結,你刷再多題效果也不會明顯。
高中數學的學習方法9
高中數學學習是中學階段承前啟后的關鍵時期,不少學生升入高中后,能否適應高中數學的學習,是擺在高中新生面前的一個亟待解決的問題,除了學習環境、教學內容和教學因素等外部因素外,同學們應該轉變觀念、提高認識和改進學法,本文就此問題談點看法。
1、認識高中數學的特點。
高中數學是初中數學的提高和深化,初中數學在教材表達上采用形象通俗的語言,研究對象多是常量,側重于定量計算和形象思維,而高中數學語言表達抽象.
2、要提高自我調控的“適教”能力。
一般來說,教師經過一段時間的教學實踐后,因自身對教學過程的不同理解和知識結構、思維特點、個性傾向、能力品質、教學觀念、職業經歷等原因,在教學方式、方法、策略的采用上表現出一定的傾向性,形成自己獨特的、鮮明的、一貫的教學風格或特點。作為一名學生,讓老師去適應自己顯然不現實,我們應該根據教的特點,從適應教的目的出發,立足于自身的實際,優化學習策略,調控自己的學習行為,使自己的學法逐步適應老師的教法,從而使自己學得好、學得快。
3、正確對待學習中遇到的新困難和新問題。
在開始學習高中數學的過程中,肯定會遇到不少困難和問題,同學們要有克服困難的勇氣和信心,勝不驕,敗不餒,有一種“初生牛犢不怕虎”的精神,愈挫愈勇,千萬不能讓問題堆積,形成惡性循環,而是要在老師的引導下,尋求解決問題的辦法,培養分析問題和解決問題的能力。
4、要將“以老師為中心”轉變為“以自己為主體,老師為主導”的學習模式。
數學不是靠老師教會的,而是在老師引導下,靠自己主動思維活動去獲取的,學習數學就是要積極主動地參與教學過程,并經常發現和提出問題,而不能依著老師的慣性運轉,被動地接受所學知識和方法。
5、要養成良好的預習習慣,提高自學能力。
課前預習而“生疑”,“帶疑”聽課而“感疑”,通過老師的.點撥、講解而“悟疑”、“解疑”,從而提高課堂聽課效果。
6、要養成良好的審題和解題習慣,提高閱讀能力。
審題是解題的關鍵,數學題是由文字語言、符號語言和圖形語言構成的,拿到目要“寧停三分”,“不搶一秒”,要在已有知識和解題經驗基礎上,譯字逐句仔細審題,細心推敲,切忌題意不清,倉促上陣,審數學題有時須對題意逐句“翻譯”,將隱含條件轉化為明顯條件;有時需聯系題設與結論,前后呼應挖掘構建題設與目標的橋梁,尋找突破點,從而形成解題思路。
7、要養成良好的演算、驗算習慣,提高運算能力。
學習數學離不開運算,初中老師往往一步一步在黑板上演算,因時間有限,運算量大,高中老師常把計算留給學生,這就要同學們多動腦,勤動手,不僅能筆算,而且也能口算和心算,對復雜運算,要有耐心,掌握算理,注重簡便方法。解后要反思,提高分析問題的能力。解完題目之后,要不失時機地回顧:解題過程中是如何分析聯想探索出解題途徑的?使問題獲得解決的關鍵是什么?在解決問題的過程中遇到了哪些困難?又是怎樣克服的?這樣,通過解題后的回顧與反思,就有利于發現解題的關鍵所在,并從中提煉出數學思想和方法,只有勤反思,才能“站得高山,看得遠,駕馭全局”,才能提高自己分析問題的能力。
8、要善于交流,提高表達能力,養成糾錯訂正的習慣。
在數學學習過程中,對一些典型問題,同學們應善于合作,各抒己見,互相討論,取人之長,補己之短,也可主動與老師交流,說出自己的見解和看法,在老師的點撥中,他的思想方法會對你產生潛移默化的影響。因此,只有不斷交流,才能相互促進、共同發展,提高表達能力。如果固步自封,就會造成鉆牛角尖,浪費不必要的時間。
9、要勤學善思,提高創新能力。
“學而不思則罔,思而不學則貽”。在學習數學的過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,進行獨立思考,注重新舊知識的內在聯系,把握概念的內涵和外延,做到一題多解,一題多變,不滿足于現成的思路和結論,善于從多側面、多方位思考問題,挖掘問題的實質,勇于發表自己的獨特見解。因為只有思索才能生疑解疑,只有思索才能透徹明悟。一個人如果長期處于無問題狀態,就說明他思考不夠,學業也就提高不了。
10、要養成做筆記的習慣,提高理解力。
為了加深對內容的理解和掌握,老師補充內容和方法很多,如果不做筆記,一旦遺忘,無從復習鞏固,何況在做筆記和整理過程中,自己參與教學活動,加強了學習主動性和學習興趣,從而提高了自己的理解力,也養成歸納總結的習慣。
總之,要養成良好的學習習慣,勤奮的學習態度,科學的學習方法,充分發揮自身的主體作用,不僅學會,而且會學,只有這樣,才能取得事半功倍之效。
高中數學的學習方法10
高中數學提高成績的方法有哪些
基礎很重要,保持耐心多鞏固
要學好數學,最關鍵的是要有一個好的基礎。只有打牢數學基礎,才能夠把高中數學好,同樣只有打好基礎,才能夠數學取得高分。打好基礎是最關鍵的!比如:建一棟大樓,如果地基不穩,不管大樓有多么豪華,都只是華而不實。
想學好數學,對數學感興趣
其實學好數學最好的辦法就是發自內心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數學的積極性也就提高了,覺得數學并沒有那么難,就愿意去多接觸了。
多做題反復做,有題感
其實學好數學辦法就是要大量做題,反復去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
學好高中數學的方法技巧
想要學好數學不能只動腦思考,一定要勤動手多做題,因為很多時候,沒有想明白,但是用手去寫寫,很可能就做出來了。
想要學好數學的一個重要方法就是每天在完成老師布置的家庭作業前,先認真復習當天課堂上老師所講內容,再通過做題進一步鞏固加深,從而做到觸類旁通,舉一反三。如果只是上課聽聽,那是遠遠不夠的。
想要學好數學必須要做到并且做好一點:課前預習,課后復習。上課之前一定要提前預習新知,把看不懂的地方做好標記,課堂上有針對性的重點聽解,下課后要及時復習,因為自己預習沒搞懂的知識點上課聽懂之后很容易忘,一定要及時復習鞏固,才能加深記憶。
高中數學學習方法匯總
1.不少同學都會有個相同的錯誤,就是在老師講課的時候,拼命的做筆記,做計算。這都是徒勞或者是低效的。最有效的是拋開一切,認真理解老師的解題思路,千萬不要糾結某個計算結果或者是某個環節,你所要理解的是,一道題如何一環環的解開和每一個環節的原理。
2.要學好高中數學,最主要的`是自己做題,千萬不可依賴老師或者同學,不提倡題海戰術,因為做一道新題要比你做一百道同樣的題強很多。每做完一道題,要總結出解題的思路方法。
3.整個高中最難的一塊就是函數,而函數又恰巧學在前面,導致很多學生受挫。函數一塊的話,可以先了解一下函數圖象的一塊,借助圖象來解函數問題,非常方便。
4.看書能明白,聽老師講題覺得很簡單,但一到自己做,就不會了。這是一個通病。主要原因不是因為高中的數學有多難,而是思維沒有轉變過來。初中的題一般比較簡單,所以死記解題方法都可以,但是高中數學就不行了。
高中數學的學習方法11
課前預習
一個老生常談的話題,也是提到學習方法必將的一個,話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預習的能有幾人,課前預習可以使我們提前了解將要學習的知識,不至于到課上手足無措,加深我們聽課時的理解,從而能夠很快的吸收新知識。
記筆記
這里主要指的是課堂筆記,因為每節課的時間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來,一來可以加深我們的理解,好記性不如爛筆頭嗎,二來可以方便我們以后復習查看。如果對課堂講述的知識不理解的同學更應該做筆記,以便課下細細琢磨,直到理解為止。
課后復習
同預習一樣,是個老生常談的話題,但也是行之有效的.方法,課堂的幾十分鐘不足以使我們學習和消化所學知識,需要我們在課下進行大量的練習與鞏固,才能真正掌握所學知識。
涉獵課外習題
想要在數學中有所建樹,取得好成績,光靠課本上的知識是遠遠不夠的,因此我們需要多多涉獵一些課外習題,學習它們的解題思路和方法,如果實在不能理解,可以問問老師或者同學。
學會歸類總結
學習數學要記得東西很多,尤其是數學公式,而且知識還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個公式,不但增加記憶量,而且容易忘,此時我們必須學會歸類總結,把經常搭配使用的公式等總結在一起記憶,這樣會大大的減少我們的記憶量,同時提高我們做題效率。
建立糾錯本
我們在學習數學的時候可能會經常因為同樣一類題目而失分,自己也十分懊惱,其實有辦法可以解決這個問題,就是建立糾錯本,幫我們經常會出錯的題目都集中在一起(當然只要是做錯過得都可以記錄上),然后空閑的時候看看,考試之前再看看,這樣考試的時候出現同類題目再出錯的幾率就降低好多。
寫考試總結
寫考試總結是一個好習慣,考試總結可以幫我們找出學習之中不足之處,以及我們知識的薄弱環節,從而及時的彌補不足,以及以后的學習方向。
高中數學的學習方法12
考試的內容與要求
函數是描述數學對象變化規律的重要教學模型,是中學數學的主體內容。函數在中學階段分別設有函數(函數概念、單調性、奇偶性、周期性、對稱性、極值、圖象等),指數函數與對數函數,三角函數,函數的應用等。它既是初中函數內容的繼續與提高,也為高中數學的進一步學習奠定基礎。
向量是既有大小又有方向的量,具有“數”和“形”的雙重特點,是一種廣泛應用的數學工具。平面向量學習的主要內容是四種運算,共線與垂直的判斷方法,夾角與長度的計算等。
本次期末考試對上述內容的考查,既全面又突出重點,既注重知識的指導性與思想性,又考慮到各個章節的考試要求和相對獨立性,所以建議在期末復習時,要注重基本概念、基本符號、基本性質、基本運算的復習與檢查落實,選擇一些體現數學思想、數學方法、有助于提高學生能力的典型題目進行鞏固訓練,達到提高復習效果的目的。
具體步驟
1、回歸課本、明確復習范圍及重點范圍
本學期我們高一學習了必修1、必修4兩本教材。先把考查的內容分類整理,理清脈絡,使考查的知識在心中形成網絡系統,并在此基礎上明確每一個考點的內涵與外延。在建立知識系統的同時,同學們還要根據考綱要求,掌握試卷結構,明確考查內容、考查的重難點及題型特點、分值分配,使知識結構與試卷結構組合成一個結構體系,并據此進一步完善自己的復習結構,使復習效果事半功倍。
2、弄懂基本概念
先把你以前學過的卻不懂的知識,概念,定理再結合課本、筆記復習,直到弄懂為止。
3、弄會基本方法
復習課上,老師會把最基本,最重要的思想、方法再過一遍,這時候一定認真聽(為什么有的同學好像平時沒怎么好好學,可是考試成績不錯呢,就是因為他抓緊了這段時間),當然,既然是“過”一遍,不可能還像剛開始講課那樣詳細,因此課后你一定要對老師講的方法做針對性練習,真正把數學復習計劃落實到實處。
熟練掌握數學方法,以不變應萬變。一般同一份試卷,相同方法不可能出現多次;同時,數學的主要方法在一份試卷上基本都能用得上。因此遇到思路一下不能突破的難題,要好好想想以前遇到的類似的問題是如何處理的,在已經作答好的題目中用過了哪些方法,常用的方法還有哪些沒用得上,能否用來解決這個難題,只要平時多加分析,是不難發現解題思路的。
三、考試方法指導
1、規范作答爭取少扣分
一些同學考試時題題被扣分,大多是答題不規范,抓不住得分要點。如立體幾何證明的次要條件要交待,分類討論問題最后有綜上可得,應用題最后要回答題目的設問,函數應用題要有定義域等。另外,有的題目是你以前會做,但是過這么長時間了,有可能思路忘了;有的題目你有思路,但是具體的一些解題細節不一定很清楚。的克服辦法就是,數學復習計劃中,無論做沒做過,以前是否會做,都當成新題再做一遍!
2、掌握好看與做的時間分配
好多同學都覺得幾天不做數學題后再考試,審題就會遲疑緩慢,入手不順,運算不暢且易出錯。所以每天必須堅持做適量的練習,特別是重點和熱點題型,防止思想退化和惰化,保持思維的靈活和流暢。特別是停課復習期間,更要掌握好看和做的時間分配。
3、解題過程
(1)弄清問題.即從題目本身去獲得從何處下手、向何方前進的信息。要逐字逐句地分析條件、分析結論、分析條件與結論之間的關系。
(2)擬定計劃.也就是尋找解題思路。
(3)實現計劃.就是把打通了的'解題思路用文字具體表達出來。做到:方法簡單、起點明確、層次清楚、定理準確、論證嚴密、書寫規范。
掌握每一個公式定理
做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經具備了一定的理解力。
做課后練習題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎夯實可以告一段落。
進行專題訓練提高數學成績
1.做高中數學題的時候千萬不能怕難題!有很多人數學分數提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導數,看到稍微長一點的復雜一點的敘述,甚至看到21、22就已經開始退卻了。這部分的分數,如果你不去努力,永遠都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數學這門學科太多,就算讓它打腫了又怎樣,后面一點一點的強大起來,總有那么一天你去打它的臉。
2.錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學學你能思考到答案的哪一步,學著去偷分。當然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。
高中數學的學習方法13
一、數學學習方法
解題要以基本訓練題為主。復習數學離不開解題。近幾年的高考數學試題,始終堅持以《考試說明》作為高考命題的依據,而《考試說明》中數學科考試的內容又是依據中學數學《教學大綱》和有關中學數學教學的調整意見制定的。不難發現,高考數學試卷中有相當多的試題是從中學數學課本中基本題目的直接引用或稍作變形而來的。
為此,我們在復習的最后階段務必重視基礎,切實抓好基礎知識和基本訓練。對課本和以往用過的復習資料(以一種為限不必多)中的典型例題、基本習題再做一遍,最好能嘗試不同解法,即使進行少量的新的較難題目的訓練時,也要不斷聯系基礎知識和基本訓練,充分體會基礎數學的通性、通法在解題中的作用。
數學基礎知識的復習要充分重視知識的形成過程,解數學題(基礎訓練)要著重研究解題的思維過程,弄清基本數學方法和基本數學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數學問題的多種途徑,注意培養直覺猜想、歸納抽象、邏輯推理、演繹證明、運算求解等理性思維能力。
二、數學應該怎么學
1、制定自己的復習規劃
老老實實從課本開始復習,抓基礎。平時上課的時候,聽不懂就記下筆記,自己按照課本章節,一章一章的復習,輔以課本后面的.習題和配套練習冊題。以基礎簡單題、中等題為主。
一方面鞏固基礎,一方面提升信心。復習前期,不要重視考試分數,不要把精力放在試卷上。要把精力放在課本上。
2、要講究方法
方法是提高效率的先決條件,因為沒有適合的方法,導致備考效率低下,在時間上是不允許的,畢竟高考不是只考察一門學科。
因此在復習過程中一方面講究循序漸進,一方面還要講究方法。尤其是自我復習時,缺乏指導性是比較吃虧的,我們可以多問老師,多問同學。對輔導書的選購,一定要從基礎的學習方法中去選,而不是買大量解題的輔導書。
高中數學的學習方法14
摘要:課本是考試內容的載體,是高考命題的依據,也是智能的生長點,是最有價值的資料,有相當多的高考試題是課本中基本題目的直接引用或稍作變形得來的,其用意就是引導我們要重視基礎,切實抓好“三基”(基礎知識、基本技能、基本方法)。最基礎的知識是最有用的知識,最基本的方法是最有用的方法。
關鍵詞:知識,技能,方法
近年來,數學復習資料名目繁多,許多教師過于依賴各類資料,在復習中忽視了書本中的基礎知識。這中做法實際上相當于在復習中失去了基石,現談談本人的一些看法。
一、重視基礎知識、基本技能、基本方法
課本是考試內容的載體,是高考命題的依據,也是智能的生長點,是最有價值的資料,有相當多的高考試題是課本中基本題目的直接引用或稍作變形得來的,其用意就是引導我們要重視基礎,切實抓好”三基”(基礎知識、基本技能、基本方法)。最基礎的知識是最有用的知識,最基本的方法是最有用的方法。在復習過程中,我們必須重視課本,夯實基礎,以課本為主,重新全面地梳理知識,方法,注重知識結構的重組與概括,揭示其內在聯系與規律,從中提煉出思想方法。在知識的深化過程中,切忌孤立對待知識,方法,而應自覺地將其前后聯系,縱橫比較、綜合,自覺地將新知識及時納入已有的知識系統中去,注意通用通法,淡化特殊技巧。
近年來高考數學試題的新穎性,靈活性越來越強,不少學生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養能力,因而忽視了基礎知識、基本技能、基本方法的復習。其實近幾年的高考命題已經明確告訴我們:基礎知識、基本技能、基本方法始終是高考數學考查的重點。選擇題、填空題以及解答題中的基本常規題已達到整份試卷的80%左右,對基礎知識的要求也更高、更嚴了。如果我們在復習中過于粗疏,或在學習中對基礎知識不求甚解,都會導致在考試中判斷錯誤。其實定理、公式推證的過程就蘊涵著重要的解題方法和規律,如果沒有發掘其內在的規律就去做題,試圖通過大量地做題去“悟”出某些道理,只會事倍功半。
二、抓剛務本,落實教材
數學復習任務重,時間緊,但決不能因此而脫離教材。相反,要緊扣大綱,抓住教材,在總體上把握教材,明確每一章、每一節的知識在整體中的地位、作用。
近年來的試題都與教材有著密切的聯系,有的是直接利用教材中的例題、習題、公式定理的證明作為高考題;有的是將教材中的題目略加修改、變形后作為高考題;還有的是將教材中的題目合理拼湊、組合作為高考題。因此,一定要高度重視教材,針對教材所要求的內容和方法,把主要的精力放在教材的落實上,切忌刻意追求偏題、怪題和技巧過強的難題。
學生對基礎知識和基本技能的理解與掌握是數學教學的基本要求,也是評價學生學習的基本內容。高中數學中的基礎知識、基本技能主要包括②,基本的數學概念、數學結論的本質,概念、結論等產生的背景、應用,以及其中所蘊涵的數學思想和方法,和它們在后續學習中的作用。同時,還包括數學發現和創造的一些基本過程。
高中數學考試的內容選取,要注重對數學本質的理解和思想方法的把握,避免片面強調機械記憶、模仿以及復雜技巧。尤其要把握如下幾個要點:
1、關于學生對數學概念、定理、法則的真正理解。尤其是,對數學的理解,至少包括能否獨立舉出一定數量的用于說明問題的正例和反例。
2、關于不同知識之間的聯系和知識結構體系。即高中數學考試應關注學生能否建立不同知識之間的聯系,把握數學知識的結構、體系。
3、對數學基本技能的考試,應關注學生能否在理解方法的基礎上,針對問題特點進行合理選擇,進而熟練運用。同時,注意數學語言具有精確、簡約、形式化等特點,適當檢測學生能否恰當地運用數學語言及自然語言進行表達與交流。
三、加強通性通法的總結和運用
在復習中應淡化特殊技巧的訓練,重視數學思想和方法的作用。常用的數學思想方法有:
1、函數思想。中學數學,特別是中學代數,可謂是以函數為中心(綱)。集合的學習,求函數的定義域和值域打下了基礎;映射的引入,使函數的核心----對應法則更顯現其本質;單調性、奇偶性、周期性的研究,是對映射更深入更細致的刻畫;函數與反函數的研究,辨證全面地看待事物之間的制約關系。數列可以看成是特殊的函數。解方程f(x)=0,就是求函數y=f(x)的零點;解不等式f(x)0或f(x)0,就是求函數y=f(x)取正值、負值的區間;函數極限的研究,導數、微分、積分的研究,也完全是以函數為對象,為中心的。一句話,抓住了函數,就牽起中學代數的“牛鼻子”。
2、數形結合思想。所謂數形結合,就是根據數與形之間的.對應關系,通過數與形的相互轉化來解決數學問題的思想,實現數形結合,常與以下內容有關:(1)實數與樹軸上的點的對應關系;(2)函數與圖象的對應關系;(3)曲線與方程的對應關系;(4)以幾何元素和幾何條件為背景,建立起來的概念,如復數、三角函數等;(5)所給的等式或代數式的結構含有明顯的幾何意義。
數形結合的重點是“以形助數”。運用數形結合思想,不僅易直觀發現解題途徑,而且能避免復雜的計算與推理。大大簡化了解題過程。這在解選擇題、填空題中更顯其優勢,要注意培養這種思想意識,要爭取做到“胸中有圖,見數想圖”,以開拓自己的思維視野。
3、分類討論思想。所謂分類討論,就是當問題所給的對象不能統一研究時,就需要對研究對象按某個標準分類,然后對每一類分別研究得出每一類的結論,最后綜合各類結果得到整個問題的答案。實質上,分類討論是“化整為零,各個擊破,再積零為整”的數學策略。
分類原則:分類的對象確定,標準統一,不重復,不遺漏,分層次,不越級討論。
分類方法:明確討論對象的全體,確定分類標準,正確進行分類;逐類進行討論,獲取階段性成果;歸納小結,綜合得出結論。
4、轉化思想。將未知解法或難以解決的問題,通過觀察、分析、類比、聯想等思維過程,選擇運用恰當的數學方法變換,化歸為在已知知識范圍內已經解決或容易解決的問題的思想叫做化歸與轉化的思想。化歸與轉化的思想的實質是揭示聯系,實現轉化。
熟練、扎實地掌握基礎知識、基本技能和基本方法是轉化的基礎;豐富的聯想、機敏的觀察、比較、類比是實現轉化的橋梁;培養訓練自己自覺的化歸與轉化意識需要對定理、公式、法則有本質上的深刻理解和對典型習題的總結和提煉,要積極主動有意識地去發現事物之間的本質聯系。“抓基礎,重轉化”是學好中學數學的金鑰匙。
四、幫助學生打好基礎,發展能力
教師應幫助學生理解和掌握數學基礎知識、基本技能,發展能力。具體來說:
1、夯實基礎、加強概念教學:歷年高考都有40%左右分值比重的試題綜合性較弱、難度較低、貼近教材,解答過程較為直觀且命題方式相對穩定,用以考查學生基礎知識的掌握情況。有40%左右分值比重的試題綜合性較強,命題較為靈活,難度相對較高,用以考查學生的基本能力。知識是基礎,能力的提高和知識的豐富是相互伴隨的過程,要意識到基礎知識的重要性,常規教學中一味求難求變的作法是不可取的,抓住基礎知識是全面提高教學質量和高考成績的關鍵。數學科學建立在一系列概念的基礎之上,數學教學由概念開始,概念教學是基礎的基礎。數學具有高度抽象的特點,概念的形成是教學工作的難點。知識的發生發現過程是概念的形成過程,挖掘并精化知識的發生發現過程,直觀展現知識的發生背景和前人的思維過程,是概念教學的關鍵。數學學習要理解諸多的概念及概念間的關系,概念教學貫穿于數學教學工作的始終。探討概念間的關系,展示概念間的聯系,把諸多概念有機地串接起來,有利于加深學生對概念的理解,有利于“辯證、普遍聯系”的認識觀念的形成,有利于探尋、解決問題能力的提高和數學思想方法的形成。
2、強調對基本概念和基本思想的理解和掌握。教學中應強調對基本概念的理解和掌握,對一些核心概念要貫穿高中數學教學的始終,幫助學生逐步加深理解。由于數學高度抽象的特點,注重體現基本概念的來龍去脈。在教學中要引導學生經歷從具體實例抽象出數學概念的過程,在初步運用中逐步理解概念的本質。
3、重視基本技能的訓練。熟練掌握一些基本技能,對學好數學是非常重要的。在高中數學課程中,要重視運算、作圖、推理、處理數據以及科學計算器的使用等基本技能訓練。但應注意避免過于繁雜和技巧性過強的訓練。
隨著時代和數學的發展,高中數學的基礎知識和基本技能也在發生變化。一些新的知識就需要添加進來,原有的一些基礎知識也要用新的理念來組織教學。因此,教師要用新的觀點審視基礎知識和基本技能,并幫助學生理解和掌握數學基本知識、基本技能和基本思想。對一些核心概念和基本思想(如函數、空間觀念、數形結合、向量、導數、統計、隨機觀念、算法等)要在整個高中數學的教學中螺旋上升,讓學生多次接觸,不斷加深認識和理解。在教學中要引導學生經歷從具體實例抽象出數學概念的過程,在初步運用中逐步理解概念的本質,注重體現基本概念的來龍去脈。在新課程中,數學技能的內涵也在發生變化,在教學中要重視運算、作圖、推理、數據處理、科學計算器和計算機的使用等基本技能訓練,但應注意避免過于繁雜和技巧性過強的訓練。
高中數學的學習方法15
"八引導",即學科價值引導、愛心引導、興趣引導、目標引導、競賽引導、環境引導、榜樣引導、方法引導。
1.學科價值引導
就是要讓學生明白數學的學科價值,懂得為什么要學習數學知識。
一是要讓學生明白數學的悠久歷史;
二是要讓學生明白數學與各門學科的關系,特別是它在自然科學中的地位和作用;
三是要讓學生明白數學在工農業生產、現代化建設和現代科學技術中的地位和作用;四是要讓學生明白當前的數學學習與自己以后的進一步學習和能力增長的關系,使其增強克服數學學習心理障礙的自覺性,主動積極地投入學習。
2.愛心引導
關心學生、愛護學生、理解學生、尊重學生,幫助學生克服學習上的困難。特別是對于數學成績較差的學生,教師更應主動關心他們,征詢他們的意見,想方設法讓他們體驗到學數學的樂趣,向他們奉獻一片摯誠的愛心。
3.興趣引導
一是問題激趣。"問題具有相當難度,但并非高不可攀,經努力可以克服困難,但并非輕而易舉;可以創造條件尋得解決問題的途徑,但并非一蹴而就";
二是情景激趣,把教學內容和學生實際結合起來、創設生動形象、直觀典型的情景,激起學生的學習興趣。此外,還有語言激趣、變式激趣、新異激趣、遷移激趣、活動激趣等等。
4.目標引導
數學教師要有一個教學目標體系,包括班級目標、小組目標、優等生目標和后進生目標,面向全體學生,使優等生、中等生和后進生都有前進的目標和努力的方向。其目標要既有長期性的又有短期性的,既有總體性的又有階段性的,既有現實性的又有超前性的。對于學生個體,特別是后進生和尖子生,要努力通過"暗示"和"個別交談"使他們明確目標,給他們加油鼓勁。
5.環境引導
"加強校風、班風和學風建設,優化學習環境;開展"一幫一"、"互助互學"活動;加強家訪,和家長經常保持聯系,征求家長的意見和要求,使學生有一個"關心互助、理解、鼓勵"的良好學習環境。
6.榜樣引導
數學教師要引導學生樹立自己心中的榜樣,一是要在教學中適度地介紹國內外著名的數學家,引導學生向他們學習;二是要引導學生向班級中刻苦學習的同學學習,充分發揮榜樣的"近體效應";三是教師以身示范,以人育人。
7.競爭引導
開展各種競賽活動,建立競爭機制,引導學生自覺抵制和排除不健康的心理因素,比、學、趕、幫爭先進。
8.方法引導
在數學知識教學、能力訓練的同時,要進行數學思維方法、學習方法、解題方法等的指導。總之,中學生數學學習的心理障礙是多方面的,其消極作用是顯而易見的,產生的.原因也是復雜的。與此相應,引導中學生克服心理障礙的方法也應是多樣的,沒有固定模式。我們數學教師要不斷加強教育理論的學習,及時準確地掌握學生的思維狀況,改進教法,引導學生自覺消除數學學習的心理障礙,使他們真正成為學習數學的主人,讓素質教育在數學教學這塊園地中開出鮮艷的花朵,結出豐碩的果實。
【高中數學的學習方】相關文章:
高中數學的學習方法12-02
高中數學學習總結04-09
高中數學的學習方法05-17
高中數學的學習方法(經典)10-22
高中數學的學習方法(優)05-29
高中數學學習方法10-12
高中數學新課程學習心得02-26
有效的高中數學學習方法01-05
高中數學學習計劃(通用11篇)05-31
高中數學有效的學習方法(精選14篇)06-26