人教版高一數學知識點精選5篇總結
總結就是把一個時段的學習、工作或其完成情況進行一次全面系統的總結,寫總結有利于我們學習和工作能力的提高,因此我們要做好歸納,寫好總結。總結你想好怎么寫了嗎?以下是小編整理的人教版高一數學知識點精選5篇總結,希望能夠幫助到大家。
人教版高一數學知識點精選5篇總結1
冪函數的性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0x="">0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數無界。
解題方法:換元法
解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變量代換法.通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來.或者變為熟悉的形式,把復雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。
人教版高一數學知識點精選5篇總結2
圓的方程定義:
圓的標準方程(x-a)2+(y-b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1.直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系.
①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.
①dR,直線和圓相離.
2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.
3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.
切線的性質
⑴圓心到切線的距離等于圓的半徑;
⑵過切點的半徑垂直于切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直于切線三個性質中的兩個時,第三個性質也滿足.
切線的判定定理
經過半徑的外端點并且垂直于這條半徑的直線是圓的切線.
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.
圓錐曲線性質:
一、圓錐曲線的定義
1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.
2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.
3.圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線.當01時為雙曲線.
人教版高一數學知識點精選5篇總結3
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。
多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質
(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質:
(1)側棱交于一點。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的.直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
人教版高一數學知識點精選5篇總結4
1、函數零點的定義
(1)對于函數)(xfy,我們把方程0)(xf的實數根叫做函數)(xfy的零點。
(2)方程0)(xf有實根?函數()yfx的圖像與x軸有交點?函數()yfx有零點。因此判斷一個函數是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數根,有幾個實數根。函數零點的求法:解方程0)(xf,所得實數根就是()fx的零點(3)變號零點與不變號零點
①若函數()fx在零點0x左右兩側的函數值異號,則稱該零點為函數()fx的變號零點。②若函數()fx在零點0x左右兩側的函數值同號,則稱該零點為函數()fx的不變號零點。
③若函數()fx在區間,ab上的圖像是一條連續的曲線,則0)()(
2、函數零點的判定
(1)零點存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線,并且有()()0fafb,那么,函數)(xfy在區間,ab內有零點,即存在),(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。
(2)函數)(xfy零點個數(或方程0)(xf實數根的個數)確定方法
①代數法:函數)(xfy的零點?0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數)(xfy的圖象聯系起來,并利用函數的性質找出零點。
(3)零點個數確定
0)(xfy有2個零點?0)(xf有兩個不等實根;0)(xfy有1個零點?0)(xf有兩個相等實根;0)(xfy無零點?0)(xf無實根;對于二次函數在區間,ab上的零點個數,要結合圖像進行確定.
3、二分法
(1)二分法的定義:對于在區間[,]ab上連續不斷且()()0fafb的函數()yfx,通過不斷地把函數()yfx的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
①確定區間[,]ab,驗證()()0fafb,給定精確度e;
②求區間(,)ab的中點c;③計算()fc;
(ⅰ)若()0fc,則c就是函數的零點;
(ⅱ)若()()0fafc,則令bc(此時零點0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時零點0(,)xcb);
④判斷是否達到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步.
人教版高一數學知識點精選5篇總結5
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、并集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、并集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}
對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以MN=P,故選B。
【人教版高一數學知識點精選5篇總結】相關文章:
高一數學知識點總結07-20
高一數學必修一知識點總結08-09
高一政治知識點總結05-08
高一化學知識點總結01-12
高一歷史知識點總結05-07
高考數學知識點總結05-18
高一政治必修一知識點總結05-09
人教版高一地理必修二常考知識點11-12
上海高一數學教學總結01-11
高中地理必修一知識點總結人教版01-06