小學低年級數學知識點歸納總結

時間:2023-04-26 18:29:20 偲穎 總結 我要投稿
  • 相關推薦

人教版小學低年級數學知識點歸納總結(精選10篇)

  上學的時候,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點就是學習的重點。你知道哪些知識點是真正對我們有幫助的嗎?下面是小編為大家整理的人教版小學低年級數學知識點歸納總結,歡迎閱讀,希望大家能夠喜歡。

人教版小學低年級數學知識點歸納總結(精選10篇)

  小學低年級數學知識點歸納總結 1

  第一單元

  時分秒

  1、鐘面上有3根針,它們是(時針)、(分針)、(秒針),其中走得最快的是(秒針),走得最慢的是(時針)。

  2、鐘面上有(12)個數字,(12)個大格,(60)個小格;每兩個數間是(1)個大格,也就是(5)個小格。

  3、時針走1大格是(1)小時;分針走1大格是(5)分鐘,走1小格是(1)分鐘;秒針走1大格是(5)秒鐘,走1小格是(1)秒鐘。

  4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。

  5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。

  6、時針從一個數走到下一個數是(1小時)。分針從一個數走到下一個數是(5分鐘)。秒針從一個數走到下一個數是(5秒鐘)。

  7、鐘面上時針和分針正好成直角的時間有:(3點整)、(9點整)。

  8、公式。(每兩個相鄰的時間單位之間的進率是60)

  1時=60分1分=60秒

  半時=30分60分=1時

  60秒=1分30分=半時

  第二、四單元

  1、的幾位數和最小的幾位數

  的一位數是9,最小的一位數是0.

  的二位數是99,最小的二位數是10

  的三位數是999,最小的三位數是100

  的四位數是9999,最小的四位數是1000

  的五位數是99999,最小的五位數是10000

  的三位數比最小的四位數小1。

  2、讀數和寫數(讀數時寫漢字寫數時寫阿拉伯數字)

  ①一個數的末尾不管有一個0或幾個0,這個0都不讀。

  ②一個數的中間有一個0或連續的兩個0,都只讀一個0。

  3、數的大小比較:

  ①位數不同的數比較大小,位數多的數大。

  ②位數相同的數比較大小,先比較這兩個數的位上的數,如果位上的數相同,就比較下一位,以此類推。

  4、求一個數的近似數:

  記憶:看最位的后面一位,如果是0-4則用四舍法,如果是5-9就用五入法。

  的.三位數是位999,最小的三位數是100,的四位數是9999,最小的四位數是1000。的三位數比最小的四位數小1。

  5、被減數是三位數的連續退位減法的運算步驟:

  ①列豎式時相同數位一定要對齊;

  ②減法時,哪一位上的數不夠減,從前一位退1;如果前一位是0,則再從前一位退1。

  6、在做題時,我們要注意中間的0,因為是連續退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數相加的和:可能是三位數,也有可能是四位數。)

  7、筆算加減法時:相同數位要對齊;從個位算起。哪一位上的數相加滿10,就向前一位進1;哪一位上的數不夠減,就從前一位退1當作10,加本位再減;如果前一位是0,則再從前一位退1。(兩個三位數相加的和:可能是三位數,也有可能是四位數。)

  特別注意:中間是0的退位減法,例如:309-189;1000-428等

  8、

  ⑴加法公式:加數+另一個加數=和

  加法的驗算:

  ①交換兩個加數的位置再算一遍。

  另一個加數+加數=和

  ②和另一個加數=加數

  ⑵減法公式:被減數-減數=差

  減法的驗算:

  ①差+減數=被減數

  ②減數+差=被減數

  ③被減數-差=減數

  特別注意:驗算時“驗算”別忘了寫!

  第三單元

  測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、在計算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。

  5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)

  ①進率是10:

  1米=10分米,1分米=10厘米,

  1厘米=10毫米,10分米=1米,

  10厘米=1分米,10毫米=1厘米,

  ②進率是100:

  1米=100厘米,1分米=100毫米,

  100厘米=1米,100毫米=1分米

  ③進率是1000:

  1千米=1000米,1公里==1000米,

  1000米=1千米,1000米=1公里

  6、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數字的末尾加上3個0;

  把千克換算成噸,是在數字的末尾去掉3個0。

  7、相鄰兩個質量單位進率是1000。

  1噸=1000千克1千克=1000克

  1000千克=1噸1000克=1千克

  第五單元

  倍的認識

  1、倍的意義:要知道兩個數的關系,先確定誰是1倍數,然后把另一個數和它作比較,另一個數里有幾個1倍數就是它的幾倍。

  2、求一個數是另一個數的幾倍用除法:一個數÷另一個數=倍數

  3、求一個數的幾倍是多少用乘法;這個數×倍數=這個數的幾倍

  第六單元

  多位數乘一位數

  1、多位數乘一位數(進位)的筆算方法:相同數位對齊,從個位乘起,用一位數分別去乘多位數每一位上的數,哪一位上乘得的數積滿幾十,就向前一位進幾,與哪一位相乘,積就寫在哪一位下面。

  2、一個因數中間有0的乘法:

  ①0和任何數相乘都得0;

  ②因數中間有0,用一位數去乘多位數每一位數上的數,與中間的0相乘時,如果后面沒有進上來的數,這一位上要用0來占位,如果有進上來的數必須加上。

  ③一個因數末尾有0的乘法的簡便計算:筆算時,可以把一位數與多位數0前面那個數字對齊,再看多位數的末尾有幾個0,就在積的末尾添上幾個0.

  3、①0和任何數相乘都得0;

  ②1和任何不是0的數相乘還得原來的數。

  4、三位數乘一位數:積有可能是三位數,也有可能是四位數。

  公式:速度×時間=路程每節車廂的人數×車廂的數量=全車的人數

  路程÷時間=速度

  路程÷速度=時間

  5、(關于“大約)應用題:

  問題中出現“大約”、“約”、“估一估”、“估算”、“估計一下”,條件中無論有沒有大約都是求近似數,用估算。(估算時要用≈)

  例:387×5≈

  把387看作390(個位是7,四舍五入,7大于5所以進1,看作390)再算390×5=1950.

  所以:387×5≈1950

  第七單元

  長方形和正方形

  1、有4條直的邊和4個角的封閉圖形我們叫它四邊形。

  2、四邊形的特點:有四條直的邊,有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,四個角都是直角,對邊相等。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的特點:①對邊相等、對角相等。

  ②平行四邊形容易變形。(三角形不容易變形)

  7、封閉圖形一周的長度,就是它的周長。

  8、公式:

  長方形的周長=(長+寬)×2

  變式:①長方形的長=周長÷2-寬

  ②長方形的寬=周長÷2-長

  正方形的周長=邊長×4

  變式:正方形的邊長=周長÷4

  第八單元

  分數的初步認識

  1、分數的意義:把一個整體平均分成若干份,表示幾份就是這個整體的幾分之幾,所分的份數作分母,所取的份數作分子。

  分子表示:其中的幾份

  分母表示:平均分成幾份

  2、幾分之一:把一個物體或一個圖形平均分成幾份,每一份就是它的幾分之一。

  幾分之幾:把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

  3、把一個整體平均分得的份數越多,它的每一份所表示的數就越小。

  4,比較大小的方法:

  ①當分子相同時,分母越小分數越大,分母越大分數越小。

  ②當分母相同時,分子大的分數就大,分子小的分數就小。

  5、分數加減法:

  ①相同分母的分數加、減法的計算方法:分母不變,分子相加、減。

  ②1減幾分之幾的計算方法:計算1減幾分之幾時,先把1寫成與減數分母相同的分數,再計算。(1可以看作所有分子分母相同的分數)

  6,求一個數是另一個數的幾分之幾是多少的計算方法:

  例:把12個圓的3/4有()個圓;

  分析:先找整體12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3個;最后找分子3,表示其中的3份,所以:3×3=9;所以把12個圓的3/4有9個圓。

  小學低年級數學知識點歸納總結 2

  一、學習目標:

  1.初步經歷長度單位形成的過程,體會統一長度單位的必要性,知道長度單位的作用;

  2.在具體情境下,進一步體會加法的意義,理解相同數位上的數才能相加的道理;

  3.探索并掌握兩位數加兩位數不時位加法的計算方法,初步掌握筆算加法的法則,能熟練的計算;

  4.初步認識角,知道角的各部分名稱,初步學會用尺畫角;

  5.能夠正確理解乘法的含義;認識乘號、因數、會讀寫乘法算式;

  6.理解7的乘法口訣的來源和意義;初步掌握7的乘法口訣。

  二、學習難點:

  1.學生在具體活動中用不同的物品作計量單位去測量同一長度,來經歷統一長度單位的必要性;

  2.理解相同數位上的數才能相加的道理;掌握筆算的計算法則,能熟練計算;

  3.理解相同數位上的數才能相加的道理,即筆算中的“對位”問題;

  4.學生初步認識角,知道角的各部分名稱,初步學會用尺畫角;初步學會用尺畫角;

  5.初步理解乘法的含義,知道求幾個相同加數的和時,用乘法表示比較簡便,認識乘號、會讀,寫乘法算式;

  6.使學生理解7的乘法口訣的來源和意義;初步掌握7的.乘法口訣,能運用7的口訣正確進行計算。

  三、知識點概括總結:

  1.長度單位:長度單位是指丈量空間距離上的基本單元,是人類為了規范長度而制定的基本單位。

  其國際單位是“米”(m),常用單位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。長度單位在各個領域都有重要的作用。

  米:國際單位制中長度的標準單位是“米”,用符號“m”表示。

  分米:分米(dm)是長度的公制單位之一,1分米相當于1米的十分之一。

  厘米:長度單位,簡寫符號為:cm。

  毫米:英文縮寫為mm

  (1厘米=10毫米=0.1分米=0.01米=0.00001千米)

  2.進位:加法運算中,每一數位上的數等于基數時向前一位數進一。

  以個位向十位進位為例:基數為10(2進制的基數是2,類推),個位這個數位上的數量達到了10的情況下,則個位向前一位進1,成為一個十。

  在十進制的算法中,個位滿十,在十位中加1;十位滿十,在百位中加一。

  3.不退位減:減法運算中不用向高位借位的減法運算。例:56-22=34,6能夠減去2,所以不用向高位5借位。

  4.退位減:減法運算中必須向高位借位的減法運算。例:51-22=39

  1不能夠減去2,所以必須向高位的5借位。

  5.連加:多個數字連續相加叫做連加。例如:28+24+23=85

  6.連減:多個數字連續相減叫做連減。例如:85-40-26=19

  7.加減混合:在運算中既有加法又有減法的運算。例如:67-25+28=70

  小學低年級數學知識點歸納總結 3

  【第一單元:數一數、比多少】

  1、數一數

  數數:數數時,按一定的順序數,從1開始,數到最后一個物體所對應的那個數,即最后數到幾,就是這種物體的總個數。

  2、比多少

  同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數量同樣多。

  比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。

  比較兩種物體的多或少時,可以用一一對應的方法。

  【第二單元:位置】

  1、認識上、下

  體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。

  2、認識前、后

  體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。

  同一物體,相對于不同的參照物,前后位置關系也會發生變化。

  從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發生變化。

  3、認識左、右

  以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。

  要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。

  【第三單元:1-5的認識和加減法】

  一、1——5的認識

  1、1—5各數的含義:每個數都可以表示不同物體的數量。有幾個物體就用幾來表示。

  2、1—5各數的數序

  從前往后數:1、2、3、4、5。

  從后往前數:5、4、3、2、1。

  3、1—5各數的寫法:根據每個數字的形狀,按數字在田字格中的位置,認真、工整地進行書寫。

  二、比大小

  1、前面的數等于后面的數,用“=”表示,即3=3,讀作3等于3。前面的數大于后面的數,用“>”表示,即3>2,讀作3大于2。前面的數小于后面的數,用“<”表示,即3<4,讀作3小于4。

  2、填“>”或“<”時,開口對大數,尖角對小數。

  三、第幾

  1、確定物體的排列順序時,先確定數數的方向,然后從1開始點數,數到幾,它的順序就是“第幾”。第幾指的是其中的某一個。

  2、區分“幾個”和“第幾”

  “幾個”表示物體的多少,而“第幾”只表示其中的一個物體。

  四、分與合

  數的組成:一個數(1除外)分成幾和幾,先把這個數分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1。

  把一個數分成幾和幾時,要有序地進行分解,防止重復或遺漏。

  五、加法

  1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。

  2、加法的計算方法:計算5以內數的加法,可以采用點數、接著數、數的組成等方法。其中用數的組成計算是最常用的方法。

  六、減法

  1、減法的含義:從總數里去掉(減掉)一部分,求還剩多少用減法計算。

  2、減法的計算方法:計算減法時,可以用倒著數、數的分成、想加算減的方法來計算。

  七、0

  1、0的意義:0表示一個物體也沒有,也表示起點。

  2、0的讀法:0讀作:零

  3、0的寫法:寫0時,要從上到下,從左到右,起筆處和收筆處要相連,并且要寫圓滑,不能有棱角。

  4、0的加、減法:任何數與0相加都得這個數,任何數與0相減都得這個數,相同的兩個數相減等于0。

  如:0+8=8、9-0=9、4-4=0

  【第四單元:認識圖形】

  1、長方體的特征:長長方方的,有6個平平的面,面有大有小。

  2、正方體的特征:四四方方的,有6個平平的面,面的大小一樣。

  3、圓柱的特征:直直的,上下一樣粗,上下兩個圓面大小一樣。放在桌子上能滾動。立在桌子上不能滾動。

  4、球的特征:圓圓的,很光滑,它的表面是曲面。放在桌子上能向任意方向滾動。

  5、立體圖形的拼擺:用長方體或正方體能拼組出不同形狀的立體圖形,在拼好的立體圖形中,有一些部位從一個角度是看不到的,要從多個角度去觀察。用小圓柱可以拼成更大的圓柱。

  【第五單元:6-10的.認識和加減法】

  一、6—10的認識:

  1、數數:根據物體的個數,可以用6—10各數來表示。數數時,從前往后數也就是從小往大數。

  2、10以內數的順序:

  (1)從前往后數:0、1、2、3、4、5、6、7、8、9、10。

  (2)從后往前數:10、9、8、7、6、5、4、3、2、1、0。

  3、比較大小:按照數的順序,后面的數總是比前面的數大。

  4、序數含義:用來表示物體的次序,即第幾個。

  5、數的組成:一個數(0、1除外)可以由兩個比它小的數組成。如:10由9和1組成。

  記憶數的組成時,可由一組數想到調換位置的另一組。

  二、6—10的加減法

  1、10以內加減法的計算方法:根據數的組成來計算。

  2、一圖四式:根據一副圖的思考角度不同,可寫出兩道加法算式和兩道減法算式。

  3、“大括號”下面有問號是求把兩部分合在一起,用加法計算。“大括號”上面的一側有問號是求從總數中去掉一部分,還剩多少,用減法計算。

  三、連加連減

  1、連加的計算方法:計算連加時,按從左到右的順序進行,先算前兩個數的和,再與第三個數相加。

  2、連減的計算方法:計算連減時,按從左到右的順序進行,先算前兩個數的差,再用所得的數減去第三個數。

  四、加減混合

  加減混合的計算方法:計算時,按從左到右的順序進行,先把前兩個數相加(或相減),再用得數與第三個數相減(或相加)。

  【第六單元:11-20各數的認識】

  1、數數:根據物體的個數,可以用11—20各數來表示。

  2、數的順序:11—20各數的順序是:11、12、13、14、15、16、17、18、19、20、

  3、比較大小:可以根據數的順序比較,后面的數總比前面的數大,或者利用數的組成進行比較。

  4、11—20各數的組成:都是由1個十和幾個一組成的,20由2個十組成的。如:1個十和5個一組成15。

  5、數位:從右邊起第一位是個位,第二位是十位。

  6、11—20各數的讀法:從高位讀起,十位上是幾就讀幾十,個位上是幾就讀幾。20的讀法,20讀作:二十。

  7、寫數:寫數時,對照數位寫,有1個十就在十位上寫1,有2個十就在十位上寫2。有幾個一,就在個位上寫幾,個位上一個單位也沒有,就寫0占位。

  8、十加幾、十幾加幾與相應的減法

  (1)10加幾和相應的減法的計算方法:10加幾得十幾,十幾減幾得十,十幾減十得幾。

  如:10+5=15、17-7=10、18-10=8

  (2)十幾加幾和相應的減法的計算方法:計算十幾加幾和相應的減法時,可以利用數的組成來計算,也可以把個位上的數相加或相減,再加整十數。

  (3)加減法的各部分名稱:

  在加法算式中,加號前面和后面的數叫加數,等號后面的數叫和。

  在減法算式中,減號前面的數叫被減數,減號后面的數叫減數,等號后面的數叫差。

  9、解決問題

  求兩個數之間有幾個數,可以用數數法,也可以用畫圖法。還可以用計算法(用大數減小數再減1的方法來計算)。

  【第七單元:認識鐘表】

  1、認識鐘面

  鐘面:鐘面上有12個數,有時針和分針。

  分針:鐘面上又細又長的指針叫分針。

  時針:鐘面上又粗又短的指針叫時針。

  2、鐘表的種類:日常生活中的鐘表一般分兩種,一種:掛鐘,鐘面上有12個數,分針和時針。另一種:電子表,表面上有兩個點“:”,“:”的左邊和右邊都有數。

  3、認識整時:分針指向12,時針指向幾就是幾時;電子表上,“:”的右邊是“00”時表示整時,“:”的左邊是幾就是幾時。

  4、整時的寫法:整時的寫法有兩種:寫成幾時或電子表數字的形式。如:8時或8:00。

  【第八單元:20以內的進位加法】

  1、9加幾計算方法:計算9加幾的進位加法,可以采用“點數”“接著數”“湊十法”等方法進行計算,其中“湊十法”比較簡便。

  利用“湊十法”計算9加幾時,把9湊成10需要1,就把較小數拆成1和幾,10加幾就得十幾。

  2、8、7、6加幾的計算方法:

  (1)點數;

  (2)接著數;

  (3)湊十法。可以“拆大數、湊小數”,也可以“拆小數、湊大數”。

  3、5、4、3、2加幾的計算方法:

  (1)“拆大數、湊小數”。

  (2)“拆小數、湊大數”。

  4、解決問題

  (1)解決問題時,可以從不同的角度觀察、分析、從而找到不同的解題方法。

  (2)求總數的實際問題,用加法計算。

  小學低年級數學知識點歸納總結 4

  棱錐:棱錐是小學數學的基礎內容,小學畢業試題中分值約為4分,多以選擇題,填空題,判斷題的形式出現,難易度屬于簡單。近幾年主要考察:①棱錐的體積問題。②棱錐的側面積問題。突破方法:牢固掌握有關棱錐的概念,邊角之間的關系。這個要通過一定量的練習來掌握。

  認識位置與方向:認識位置與方向是小學數學的基礎內容,小學畢業試題中分值約為3-6分,多以選擇題,填空題,簡答題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①給出三視圖,說出組成物體最少或最多立方體的個數。②給出物體,畫出三視圖。突破方法:①平時注意積累。②熟練掌握三視圖的畫法。

  圖形的直觀認識:圖形的直觀認識是小學數學的基礎內容,小學畢業試題中分值約為6-12分,多以選擇題,填空題,證明題的形式出現,難易度屬于中等。主要考察一下幾個方面:①圓的問題,多數是計算題。②三角形的計算問題。突破方法:①對圓的各個性質熟記,能簡單畫圖。②熟練掌與三角形有關的性質等等。

  直線和線段:直線和線段是小學數學的基礎內容,小學畢業試題中分值約為4-8分,多以選擇題,填空題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①線段長度的計算。②數軸上點的距離問題。突破方法:①掌握有關線段的比,線段的中點的概念。②熟練掌握數軸概念。

  角的初步認識:角的初步認識是小學數學的基礎內容,小學數學試題中分值約為3-6分,多以選擇題,填空題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①角的分類。②角的計算。突破方法:①牢固掌握有關角的概念。②熟練掌握角的'計算問題,特別是是多個角的問題。

  長方形與正方形:長方形與正方形是小學數學的基礎內容,小學畢業試題中分值約為5-10分,多以選擇題,填空題,解答題的形式出現,難易度屬于中等。近幾年主要考察一下幾個方面:①面積和周長問題。②體積,邊長問題。突破方法:①牢固掌握有關長方形與正方形的概念:如邊,對邊,角等,特別是對角線的概念。②熟練掌握長方形與正方形的各種性質。

  平行四邊形:平行四邊形是小學數學的基礎內容,小學畢業試題中分值約為4-8分,多以選擇題,填空題,解答題的形式出現,難易度屬于中等。近幾年主要考察一下兩個個方面:①平行四邊形的周長與面積。②等腰梯形的周長和面積。突破方法:①牢固掌握有關平行四邊形的性質。②等腰梯形的性質等等。三角形:三角形是小學幾何的基礎內容,也是最重要的部分之一。小學試題中分值約為7-13分,證明題的形式出現,難易度屬于中等。近幾年主要考察一下幾個方面:①三角形的內角和,三角形的外角和,三角形的外角等等。②多邊形的內角和及組合圖形等等。突破方法:①牢固掌握有三角形的概念:如內角和,外角和,外角等,特別是三角形的各邊之間的關系。②熟練掌握多邊形的內角和,正多邊形有關角的運算。在證明過程中特別注意步驟的合理性。

  圓:圓是小學數學的基礎內容,小學畢業試題中分值約為4-8分,多以選擇題,填空題,解答題的形式出現,難易度屬于中等。近幾年主要考察一下幾個方面:①圓的面積。②圓的周長,有時用會降低題目的難度。突破方法:①牢固掌握有關圓的性質。②熟練掌握扇形,環形的面積公式。

  軸對稱圖形:軸對稱圖形是小學數學基礎內容,小學畢業試題中分值約為4分,多以選擇題,判斷題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①圖形有幾條對稱軸。②軸對稱和中心對稱的綜合應用。突破方法:①牢固掌握有關軸對稱圖形的概念。②平時注意積累,會區分軸對稱圖形和中心對稱圖形。

  作圖題(操作題):作圖題(操作題)是小學數學的基礎內容,小學畢業試題中分值約為6分,多以選擇題,填空題,簡答題的形式出現,難易度屬于難,近幾年分值由增大的趨勢。近幾年主要考察一下幾個方面:①圖形的旋轉問題。②影長問題。③平移圖像的問題。突破方法:作圖題試題開放,聯系實際,要求學生進行多方位,多角度,多層次的探究,考查了學生思維的靈活性,發散性,創新性,平時注意動手總結。

  小學低年級數學知識點歸納總結 5

  (一)分數乘法意義:

  1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。

  “分數乘整數”指的是第二個因數必須是整數,不能是分數。

  2、一個數乘分數的意義就是求一個數的幾分之幾是多少。

  “一個數乘分數”指的是第二個因數必須是分數,不能是整數。(第一個因數是什么都可以)

  (二)分數乘法計算法則:

  1、分數乘整數的計算方法:用分子乘整數的積作分子,分母不變。能約分的可以先約分,再計算。

  (1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)

  (2)約分是用整數和下面的分母約掉公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

  2、分數乘分數的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)

  (1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

  (2)分數化簡的方法是:分子、分母同時除以它們的公因數。

  (3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分后的數。(約分后分子和分母必須不再含有公因數,這樣計算后的結果才是最簡單分數)。

  (4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的.大小不變。

  (三)積與因數的關系:

  一個數(0除外)乘大于1的數,積大于這個數。a×b=c,當b>1時,c>a。

  一個數(0除外)乘小于1的數,積小于這個數。a×b=c,當b<1時,c

  一個數(0除外)乘等于1的數,積等于這個數。a×b=c,當b=1時,c=a。

  在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

  (四)分數混合運算

  1、分數混合運算的運算順序與整數混合運算的運算順序相同,先算乘法,后算加減法,有括號的先算括號里面的,再算括號外面的。

  2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

  乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分數乘法應用題——用分數乘法解決問題

  1、求一個數的幾分之幾是多少?(用乘法)

  已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數相乘。

  2、巧找單位“1”的量:在含有分數(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。

  3、求比一個數多(或少)幾分之幾的數是多少的解題方法

  (1)單位“1”的量+(-)單位“1”的量×這個數量比單位“1”的量多(或少)的幾分之幾=這個數量;

  (2)單位“1”的量×[1+這個數量比單位“1”的量多(或少)的幾分之幾]=這個數量。

  小學低年級數學知識點歸納總結 6

  一、學習目標:

  1.進一步掌握含有同一級運算的運算順序;

  2.通過具體的活動,認識方向與距離對確定位置的作用;發展空間觀念;

  3.能運用運算定律進行一些簡便運算;培養根據具體情況,選擇算法的意識與能力,發展思維的靈活性;

  4.了解小數的產生;理解小數的意義;

  5.掌握小數的計算單位及單位間的進率;

  6.理解三角形的意義,掌握三角形的特征和特性;理解三角形三邊不等的關系;

  7.理解掌握小數加、減法的方法;培養計算能力;

  8.探究和理解乘法交換律、結合律,能運用運算定律進行一些簡便運算。

  二、學習難點:

  1.能根據任意方向和距離確定物體的位置;對任意角度具體方向的準確描述;

  2.理解和抽象小數的意義;抽象小數的意義;

  3.掌握三角形的特性;懂得判斷三角形三條線段能否構成一個三角形的方法,并能用于解決有關的問題;

  4.計算方法;退位減法;

  5.探究和理解乘法交換律、結合律。

  三、知識點概括總結:

  1.整數加法:

  (1)把兩個數合并成一個數的運算叫做加法。(2)在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。(3)加數+加數=和,一個加數=和-另一個加數。2.整數減法:

  (1)已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。

  (2)在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的.加數叫做差。被減數是總數,減數和差分別是部分數。(3)加法和減法互為逆運算。3.整數乘法:

  (1)求幾個相同加數的和的簡便運算叫做乘法。

  (2)在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。(3)在乘法里,0和任何數相乘都得0。(4)1和任何數相乘都的任何數。

  (5)一個因數×一個因數=積;一個因數=積÷另一個因數。4.整數除法:

  (1)已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。

  (2)在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。(3)乘法和除法互為逆運算。

  (4)在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。

  (5)被除數÷除數=商,除數=被除數÷商被除數=商×除數。

  5.整數加法計算法則:相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。

  6.整數減法計算法則:相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合并在一起,再減。

  7.整數乘法計算法則:先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的數加起來。8.整數除法計算法則:先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數要小于除數。9.運算順序:

  (1)小數、分數、整數:小數四則運算的運算順序和整數四則運算順序相同;分數四則運算的運算順序和整數四則運算順序相同。

  (2)沒有括號的混合運算:同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。

  (3)有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括號外面的。(4)第一級運算:加法和減法叫做第一級運算。(5)第二級運算:乘法和除法叫做第二級運算。10.加法交換律:

  加法交換律的概念為:兩個加數交換位置,和不變。字母公式:a+b+c=(b+a)+c11.加法結合律:

  加法結合律的概念為:先把前兩個數相加,或者先把后兩個數相加,和不變。字母公式:a+b+c=a+(b+c)12.乘法交換律:

  乘法交換律的概念為:兩個因數交換位置,積不變。字母公式:a×b=b×a13.乘法結合律:

  乘法結合律的概念為:先乘前兩個數,或者先乘后兩個數,積不變。字母公式:a×b×c=a×(b×c)14.乘法分配律:

  乘法分配律的概念為:兩個數與一個數相乘,可以先把它們與這個數分別相乘,再相加。字母公式:(a+b)×c=a×c+b×c15.小數:小數由整數部分、小數部分和小數點組成。

  當測量物體時往往會得到的不是整數的數,古人就發明了小數來補充整數,小數是十進制分數的一種特殊表現形式。

  16.小數基本性質:小數末尾添上0或去掉0,小數的大小不變,但計數單位變了。而且,小數點向左移動一位、兩位、三位,原來的數就縮小10倍、100倍、1000倍,小數點向右移動一位、兩位、三位,原來的數就擴大10倍、100倍、1000倍。

  17.小數的寫法:整數部分寫在小數點前,小數部分寫在小數點后,中間用小數點隔開。18.小數的讀法:

  一種是按照分數的讀法來讀.帶小數的整數部分按整數讀法讀;小數部分按分數讀法讀,例如:0.38讀作百分之三十八,14.56讀作十四又百分之五十六。

  另一種讀法,整數部分仍按整數的讀法來讀,小數點讀作“點”,小數部分順次讀出每個數位上的數字,若幾個零重復,不可只讀一個0.例如:0.45讀作零點四五;56.032讀作五十六點零三二;1.0005讀作一點零零零五。

  19.小數的比較:小數大小的比較方法與整數基本相同,即從高位起,依次把相同數位上的數加以比較。

  因此,比較兩個小數的大小,先看它們的整數部分,整數部分大的那個數大;如果整數部分相同,十分位上的數大的那個數大;如果十分位上的數也相同,百分位上的數大的那個數大;20.小數的性質:

  (1)在小數的末尾添上零或去掉零,小數的大小數不變。

  (2)小數點移動會引起小數大小發生變化.把小數點分別向右移動一位、二位、三位…位,則小數的值分別擴大10倍、100倍、1000倍……

  如果把小數點分別向左移動一位、二位、三位…則小數的值分別縮小到原來的十分之一、百分之一、千分之一…

  21.小數的近似值:保留小數:按要求在舍去部分最高位進行四舍五入運算。

  22.小數加法:小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。23.小數減法:小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。24.三角形:由不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫做三角形。25.生活中的三角形物品:雨傘、帽子、彩旗、燈罩、風帆、小亭子、雪山、樓頂、切成三角形的西瓜、火炬冰淇淋、熱帶魚的邊緣線、蝴蝶翅膀、火箭、竹筍、寶塔、金字塔、三角內褲、機器上用的三角鐵、某些路標、長江三角洲、斜拉橋等。26.三角形中的線段:

  (1)中線:頂點與對邊中點的連線,平分三角形的面積。

  (2)高:從三角形的一個頂點(三角形任意兩條邊的交點)向其對邊所作的垂線段(頂點至對邊垂足間的線段),叫做三角形的高。

  (3)角平分線:平分三角形的其中一個角的線段叫做三角形的角平分線,它到兩邊距離相等。(注:一個角的平分線是射線,平分線的所在直線是這個角的對稱軸)(4)中位線:任意兩邊中點的連線。

  27.三角形為什么具有穩定性:任取三角形兩條邊,則兩條邊的非公共端點被第三條邊連接∵第三條邊不可伸縮或彎折∴兩端點距離固定∴這兩條邊的夾角固定∵這兩條邊是任取的

  ∴三角形三個角都固定,進而將三角形固定∴三角形有穩定性

  小學低年級數學知識點歸納總結 7

  角:

  (1)角的靜態定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。

  這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

  (2)角的動態定義:一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。

  所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的`射線叫做角的終邊

  角的符號:∠

  角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。

  在動態定義中,取決于旋轉的方向與角度。

  角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。

  以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  (1)銳角:大于0°,小于90°的角叫做銳角。

  (2)直角:等于90°的角叫做直角。

  (3)鈍角:大于90°而小于180°的角叫做鈍角。

  乘法:

  乘法是指一個數或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。

  乘法算式中各數的名稱:

  “×”是乘號,乘號前面和后面的數叫做因數,“=”是等于號,等于號后面的數叫做積。

  例:10(因數)×(乘號)200(因數)=(等于號)2000(積)

  平行:

  在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。

  垂直:

  兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。

  平行四邊形:

  在同一平面內有兩組對邊分別平行的四邊形叫做平行四邊形。

  梯形:

  梯形是指一組對邊平行而另一組對邊不平行的四邊形。

  平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。

  除法:

  除法法則:除數是幾位,先看被除數的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0占位。余數要比除數小,如果商是小數,商的小數點要和被除數的小數點對齊;如果除數是小數,要化成除數是整數的除法再計算。

  小學低年級數學知識點歸納總結 8

  1.根據方向和距離可以確定物體在平面圖上的位置。

  2.在平面圖上標出物體位置的方法:

  先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最后找出物體的具體位置,并標上名稱。

  3.描述路線圖時,要先按行走路線確定每一個參照點,然后以每一個參照點建立方向標,描述到下一個目標所行走的'方向和路程,即每一步都要說清是從哪兒走,向什么方向走了多遠到哪兒。

  4.繪制路線圖的方法:

  (1)確定方向標和單位長度。

  (2)確定起點的位置。

  (3)根據描述,從起點出發,找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其余每一段都要以前一段的終點為參照點。

  (4)以誰為參照點,就以誰為中心畫出“十”字方向標,然后判斷下一地點的方向和距離。

  小學低年級數學知識點歸納總結 9

  一、學習目標:

  1.知道生活中有比萬大的數;認識計數單位“萬、十萬、百萬、千萬和億”,類推每相鄰兩個計數單位之間的關系,知道數級、數位;

  2使學生認識射線,直線,能識別射線、直線和線段三個概念之間的聯系和區別;認識角和角的表示方法,知道角的各部分名稱;

  3,在理解的基礎上,掌握整數乘法的口算方法;培養類推遷移的能力和口算的能力;

  4.結合生活情境,通過自主探究活動,初步認識平行線、垂線;獨立思考能力與合作精神得到和諧發展;

  5.在理解的基礎上,掌握用整十數除商是一位數的口算方法;培養類推遷移的能力和抽象概括的能力。

  二、學習難點:

  1.認識計數單位“萬、十萬、百萬、千萬和億”;掌握每相鄰兩個計數單位之間的關系;

  2.角的意義;射線、直線和線段三者之間的關系;

  3.掌握整數乘法的口算方法;培養學生養成認真思考的良好學習習慣;

  4.初步認識平行線與垂線;理解永不相交的含義;

  5.掌握用整十數除商是一位數的口算方法;培養學生養成認真計算的良好學習習慣。

  三、知識點概括總結:

  1.億以內的數的認識:

  十萬:10個一萬;

  一百萬:10個十萬;

  一千萬:10個一百萬;

  一億:10個一千萬。

  2.數級:數級是為便于人們記讀阿拉伯數的一種識讀方法,在位值制(數位順序)的'基礎上,以三位或四位分級的原則,把數讀,寫出來。

  通常在阿拉伯數的書寫上,以小數點或者空格作為各個數級的標識,從右向左把數分開。

  3.數級分類:

  (1)四位分級法:即以四位數為一個數級的分級方法。

  我國讀數的習慣,就是按這種方法讀的。如:萬(數字后面4個0)、億(數字后面8個0)、兆(數字后面12個0,這是中法計數)。這些級分別叫做個級,萬級,億級。

  (2)三位分級法:即以三位數為一個數級的分級方法。

  這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數字后面3個0、百萬,數字后面6個0、十億,數字后面9個0。

  4.數位:數位是指寫數時,把數字并列排成橫列,一個數字占有一個位置,這些位置,都叫做數位。

  從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。

  這就說明計數單位和數位的概念是不同的。

  5.數的產生:

  阿拉伯數字的由來:古代印度人創造了阿拉伯數字后,大約到了公元7世紀的時候,這些數字傳到了阿拉伯地區。到13世紀時,意大利數學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數字做了詳細的介紹。后來,這些數字又從阿拉伯地區傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區傳入的,所以便把這些數字叫做阿拉伯數字。以后,這些數字又從歐洲傳到世界各國。

  阿拉伯數字傳入我國,大約是13到14世紀。由于我國古代有一種數字叫“籌碼”,寫起來比較方便,所以阿拉伯數字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數學成就的吸收和引進,阿拉伯數字在我國才開始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。阿拉伯數字現在已成為人們學習、生活和交往中最常用的數字了。

  小學低年級數學知識點歸納總結 10

  (一)口算除法

  1、整十數除整十數或幾百幾十的數的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表內除法計算。利用除法運算的性質:將被除數和除數同時擴大或縮小相同的倍數,商不變。如:200÷50想20÷5=4,所以200÷50=4。

  2、兩位數除兩位數或三位數的估算方法:除法估算一般是把算式中不是整十數或幾百幾十的數用“四舍五入”法估算成整十數或幾百幾十的.數,再進行口算。注意結果用“≈”號。

  (二)筆算除法

  1、除數是兩位數的筆算除法計算方法:從被除數的高位除起,先用除數試除被除數的前兩位,如果前兩位數比除數小,就看前三位。除到被除數的哪一位,商就寫在那一位的上面。每次除后余下的數必須比除數小。

  2、除數不是整十數的兩位數的除法的試商方法:如果除數是一個接近整十數的兩位數,就用“四舍五入”法把除數看做與它接近的整十數試商,也可以把除數看做與它接近的幾十五,再利用一位數的乘法直接確定商。

  3、商一位數:

  (1)兩位數除以整十數,如:62÷30;

  (2)三位數除以整十數,如:364÷70

  (3)兩位數除以兩位數,如:90÷29(把29看做30來試商)

  (4)三位數除以兩位數,如:324÷81(把81看做80來試商)

  (5)三位數除以兩位數,如:104÷26(把26看做25來試商)

  (6)同頭無除商八、九,如:404÷42(被除數的位和除數的位一樣,即“同頭”,被除數的前兩位除以除數不夠除,即“無除”,不是商8就是商9。)

  (7)除數折半商四五,如:252÷48(除數48的一半24,和被除數的前兩位25很接近,不是商4就是商5。)

  4、商兩位數:(三位數除以兩位數)

  (1)前兩位有余數,如:576÷18

  (2)前兩位沒有余數,如:930÷31

  5、判斷商的位數的方法:

  被除數的前兩位除以除數不夠除,商是一位數;被除數的前兩位除以除數夠除,商是兩位數。

  (三)商的變化規律

  1、商變化:

  (1)被除數不變,除數乘(或除以)幾(0除外),商就除以(或乘)相同的數。

  (2)除數不變,被除數乘(或除以)幾(0除外)商也乘(或除以)相同的數。

  2、商不變:被除數和除數同時乘(或除以)相同的數(0除外),商不變。

  (四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13

【小學低年級數學知識點歸納總結】相關文章:

小學數學知識點歸納02-10

小升初的數學知識點總結歸納03-29

初中數學圓的知識點總結歸納02-07

數學高二知識點總結歸納12-29

高考數學知識點歸納總結10-27

初中數學知識點總結歸納08-24

初中數學知識點歸納總結口訣04-11

高三數學知識點總結歸納09-08

高三數學知識點總結歸納01-24

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
无遮挡国产精品网站 | 中文字幕在线精品乱码高清视频 | 中国少妇与黑人高潮了 | 色狠狠一区二区三区播放 | 亚洲中文字幕高清一区 | 五月激情丁香婷婷综合中文字幕 |