- 相關推薦
高一下學期數學重點知識歸納筆記
高一下學期數學重點知識歸納筆記1
函數的性質:
函數的.單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。
判別方法:定義法,圖像法,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。
高一下學期數學重點知識歸納筆記2
求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。
直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的.關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。
交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
高一下學期數學重點知識歸納筆記3
函數的應用
1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(代數法)求方程的'實數根;
(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.
4、二次函數的零點:
二次函數。
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。
2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。
3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。
【高一下學期數學重點知識歸納筆記】相關文章:
高二數學重點知識歸納筆記08-13
高一數學知識點重點總結歸納04-29
高二化學重點知識歸納筆記09-03
高一數學必修一知識點歸納筆記04-26
高一歷史重點知識點歸納總結02-12
高一數學下學期重點知識和公式總結11-22
高一數學必修二重點知識筆記09-03
化學高一必修一知識點歸納筆記02-27
高一數學的知識點歸納總結07-11