乘法分配律教學設計15篇(集合)
作為一無名無私奉獻的教育工作者,就不得不需要編寫教學設計,教學設計是連接基礎理論與實踐的橋梁,對于教學理論與實踐的緊密結合具有溝通作用。那么什么樣的教學設計才是好的呢?以下是小編幫大家整理的乘法分配律教學設計,僅供參考,希望能夠幫助到大家。
乘法分配律教學設計1
教學內容
蘇教版《義務教育課程標準實驗教科書數學》四年級(下冊)第54~55頁。
教學目標
1、使學生在解決問題的過程中發現并理解乘法分配律,初步體會應用乘法分配律可以使一些計算簡便。
2、使學生在發現規律的過程中,發展比較、分析、抽象和概括能力,增強用符號表達數學規律的意識,進一步體會數學與生活的聯系。
3、使學生能聯系實際,主動參與探索、發現和概括規律的學習活動,感受數學規律的確定性和普遍適用性,獲得發現數學規律的愉悅感和成功感,增強學習的興趣和自信。
教學過程
一、創設情境,談話導入
談話:同學們,我們學校有5個同學就要去參加“無錫市少兒書法大賽”了,書法組的張老師準備為他們每人買一套漂亮的服裝,我們一起去看看好嗎?(課件出示例題情境圖)
二、自主探究,合作交流
1、交流算法,初步感知。
提問:從圖中你獲得了哪些信息?
再問:買5件上衣和5條褲子,一共要付多少元呢?你能解決這樣的問題嗎?請同學們在自己的本子上列出算式,再算一算。
反饋:你是怎樣解決這一問題的?為什么這樣列式?
組織學生交流自己的'解題方法,再分別說說兩個算式的意義。根據學生回答,教師利用課件演示,幫助解釋。
談話:兩個算式解決的都是同一個問題,它們的計算結果也相等,那你會把這兩個算式寫成一個等式嗎?
學生在自己的本子上寫,教師板書,讓學生讀一讀。
談話:剛才我們算的買5件夾克衫和5條褲子,一共要付多少元?如果張老師不這樣選擇,還可以怎樣選擇?(買5件短袖衫和5條褲子)
提問:買5件短袖衫和5條褲子,一共要付多少元呢?你能用兩種方法解答嗎?
根據學生回答,列出算式:32×5+45×5和(32+45)×5。
再問:這兩個算式有什么關系?可以用什么符號把它們連接起來?
啟發:比較這兩個等式,它們有什么相同的地方?
2、深入體驗,豐富感知。
引導:看表情,相信大家一定或多或少地發現了等式兩邊算式之間的聯系。現在請每個小組拿出信封中寫有算式的紙條,想一想在這幾組算式中,哪些可以用等號連起來,哪些不能?
分組匯報、交流。引導學生說一說:最后兩組為什么不能用等號連起來?兩個算式的計算結果分別是多少?有辦法使他們變得相等嗎?
要求:你能寫出一些這樣的等式嗎?先試一試,再算一算你寫出的等式兩邊是不是相等。
學生舉例并組織交流。
3、揭示規律。
提問:像這樣的等式,寫得完嗎?
談話:你能用自己的方式把這些等式中存在的規律表示出來嗎?請同學們先在小組里說一說。
反饋時引導學生用不同的方式表達。(學生可能用語言描述,可能用字母表示……)
小結:a加b的和乘c,與a乘c的積加b乘c的積的和是相等的。這就是乘法分配律。[板書:(a+b)×c=a×c+b×c]
三、實踐運用,鞏固內化
1、“想想做做”第1題。
談話:下面我們利用乘法分配律解決一些簡單的問題。
出示“想想做做”第1題,讓學生在書上填一填。
學生完成后,用課件反饋。
2、“想想做做”第2題。
你能運用今天所學的知識解決下面的問題嗎?課件出示題目,指名口答。
回答第2小題時,讓學生說一說理由。
3、“想想做做”第3題。(略)
四、梳理知識,反思總結
提問:今天這節課,你有什么收獲?有什么感受想對大家說?
五、布置作業
“想想做做”第4、5題。
[說明]
數學教學是數學活動的教學。本節課注重引導學生在自主探索的活動中,感悟和發現乘法分配律,變教學生“學會”為指導學生“會學”。教學中,先組織學生通過用兩種不同的方法解決一些實際問題,在兩個不同的算式之間建立起聯系,得到了兩個等式,并比較這兩個等式有什么相同的地方,讓學生初步感知乘法分配律。之后,給學生提供體驗感悟的空間,為學生提供符合乘法分配律和不符合乘法分配律的五組算式,引導學生在小組辨析與爭論中,進一步形成清晰的表象。在此基礎上,讓學生自己再寫出一些符合乘法分配律的等式,既為概括乘法分配律提供更豐富的素材,又加深了對乘法分配律的認識。隨后的練習設計層次清楚,重點突出,形式活潑,有效地促進學生知識的內化。這些教學活動使學生經歷了知識的形成過程,有利于學生改善學習方式。
乘法分配律教學設計2
教學目標:
1.學生在解決問題的過程中發現并理解乘法分配律,初步了解乘法分配律的應用。
2.學生在發現乘法分配律的過程中,發展比較、分析、抽象和概括的能力,增強用符號表達數學規律的意識,進一步體會數學與生活的聯系。
3.學生感受數學規律的確定性和普遍適用性,獲得發現數學規律的愉悅感和成功感,增強學習的興趣和自信。
教學重難點:
發現并理解乘法分配律。
教學準備:掛圖、小黑板。
教學流程:
一、創設情境,導入新課。
師生談話,引入主題圖:老師準備為參加學校排球操比賽的.五位同學去購買衣服。
看看買什么衣服好看呢。
二、自主探索,合作交流。
1.出示:買5件夾克衫和5條褲子,一共要付多少元?
師問你打算怎樣算?
生口答師板書:
(65+45)×565×5+45×5
請學生分別說清兩道算式的含義。
2.師問猜想一下,這兩道算式的結果會怎樣?
要驗證我們的算式是否正確,應該用什么方法?
生計算,個別板演。
證明這兩道算式的結果是相等的。
中間應用“=”接連。
3.生讀算式(65+45)×5=65×5+45×5
師問等號兩邊的算式有什么相同和不同?
生同桌說一說,并匯報。
4.這兩道算式相等是一種巧合還是有規律的呢?
出示:(2+10)×6=2×6+10×6
(5+6)×3=5×3+6×3
師問中間可以用“=”來連接嗎?
5.小組討論:這三組等式左邊有什么特點?
右邊有什么特點?
生匯報。
6.師問你能寫出具有這樣規律的等式嗎?
生獨立寫一寫,個別板書。
7.師問你能想出一道等式,可以把我們今天學習的所有具有這種規律的等式都包括在內嗎?
生寫一寫,個別板演。
8.揭題:乘法分配律
(a+b)×c=a×c+b×c
9.師總結兩個數的和乘一個數,等于這兩個數分別去乘這一個數,再把兩次乘得的積相加。
三、鞏固練習,拓展應用。
想想做做:
1.在口里填上合適的數,在○里填上運算符號。
(42+35)×2=42×口+35×口
27×12+43×12=(27+口)×口
15×26+15×14=口○(口○口)
72×(30+6)=口○口○口○口
強調:乘法分配律,可以正著用,也可以反著用。
2.橫著看,在得數相同的兩個算式后面畫“√”
(28+16)×728×7+16×7
15×39+45×39(15+45)×39
74×(20+1)74×20+74
40×50+50×9040×(50+90)
3.算一算,比一比,每組中哪一道題的計算比較簡便。
(1)64×8+36×825×17+25×3
(64+36)×825×(17+3)
讓學生體會乘法分配律可以使計算簡便。
4.用兩種不同的方法計算長方形菜地的周長,并說說它們之間的聯系。
生獨立完成并匯報。
5.你能根據下圖列出兩
道綜合算式嗎?
上面的兩道算式能組成一個等式嗎?
四、全課小結
師問今天你有什么收獲?和你的小伙伴說一說。
五、課堂作業
《補充習題》第26頁。
乘法分配律教學設計3
教學內容分析:
乘法分配律是北師大版小學數學四年級上冊第三單元P48~P49的教學內容。本課是在學生已經學習掌握了乘法交換律、結合律,并能初步應用這些定律進行一些簡便計算的基礎上進行學習的。乘法分配律是本單元的教學重點,也是本節課內容的難點,教材是按照分析題意、列式解答、講述思路、觀察比較、總結規律等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節課不僅使學生學會什么是乘法分配律,更要讓學生經歷探索規律的過程,進而培養學生的分析、推理、抽象、概括的思維能力。同時,學好乘法分配律是學生以后進行簡便計算的前提和依據,對提高學生的計算能力有著重要的作用。在本節課的教學過程的設計上,我注重從學生的生活實際出發,把數學知識和實際生活機密地聯系起來,讓學生在體驗中學到知識。
教學目標:
知識與能力:
1、在探索的過程中,發現乘法分配律,并能用字母表示。
2、會用乘法分配律進行一些簡便計算。
過程與方法:
1、通過探索乘法分配律的活動,進一步體驗探索規律的過程。
2、經歷共同探索的過程,培養解決實際問題和數學交流的能力。
情感、態度與價值觀:
1、在這些學習活動中,使學生感受到他們的身邊處處有數學。
2、增加學生之間的了解、同時體會到小伙伴合作的重要。
3、在學習活動中不斷產生對數學的好奇和求知欲,著重培養良好的學習習慣。
教學過程:
一、創設情境,激趣導入。
1、出示:
125×8=25×9×4=18×25×4=
125×16=75+25=89×100=
教師請個別學生口算并說出部分題的口算依據及應用的定律。
2、再出示:119×56+119×44=
師;這一題,誰能口算出來?老師可以口算出來,你們相信嗎?是不是老師又應用到數學的什么定律呢?你們想不想知道?
二、引導探究,發現規律。
1、出示課本插圖
師:你們看,工人叔叔正在工作呢,觀察這幅圖,你能發現哪些數學信息?
生:我看到兩個工人叔叔在貼瓷磚。
生:我發現一個叔叔貼這面墻壁,另一個叔叔貼另一面墻壁。
生:老師,我發現兩個叔叔貼的瓷磚一起數的話,一行有10塊,一共有9列。
師:你真細心。大家能根據獲得的信息提一個數學問題嗎?
學生提問題,教師出示問題:一共貼了多少塊瓷磚?
2、估計
師:誰能估計工人叔叔大約貼了多少塊瓷磚?
學生試著估計。
3、列式解答
師:同學們的估計是否正確呢?請你們用自己喜歡的方法計算一下瓷磚究竟有多少塊。
學生用自己喜歡的方法計算,教師巡視。
師:誰來向大家介紹一下自己的算法?
生:6×9+4×9(板書)
=54+36
=90(塊)
師:這邊的6×9和4×9分別是算什么?
生:分別算出正面和側面貼的塊數。
師:哦,然后兩面的塊數再相加,就是貼的總塊數。你們明白嗎?還有不一樣的方法嗎?
生:我是這樣列的',(6+4)×9(板書)
=10×9
=90(塊)
師:你能說說為什么這樣列式嗎?
生:兩面墻共有9列,一行有6+4塊,所以我先算出一行有10塊,再用10×9算出共有多少塊瓷磚。
師:你真行,找到了這種方法。現在同學們看一下這兩種方法,你發現了什么?
生:計算方法不一樣,結果卻是一樣的。
師:所以這兩個式子我們可以用一個什么樣的數學符號連接起來?
生:等于號。
教師板書。
4、觀察算式的特點
師:觀察等號兩邊的式子,它們有什么特點呢?
生:等號左邊的算式是兩個加數的和與一個數相乘的積,等號右邊
的算式是這兩個加數分別與一個數相乘,再把所得的積相加。
生:等號左邊算式中的兩個加數,就是等號右邊算式中兩個不同因數;等號左邊算式中的一個因數,就是等號右邊算式中兩個相同的因數。
師:是這樣嗎?你們能再舉一些類似的例子嗎?
5、舉例驗證
讓學生根據算式特征,再舉一些類似的例子。
如:(40+4)×25和40×25+4×25
63×64+63×36和63×(64+36)
討論交流:
(1)交流學生的舉例是否符合要求:
(2)交流不同算式的共同特點;
(3)還有什么發現?(簡便計算)
師:兩個數的和與一個數相乘的積等于每個加數分別與這個數相乘再把所得的積加起來,這叫做乘法分配律。
6、字母表示。
師:如果用a、b、c分別表示三個數,你能寫出你的發現嗎?
學生先獨立完成,然后小組交流。最后教師板書:(a+b)×c=a×c+b×c并帶讀。
7、揭示課題。
三、應用規律,解決問題。
課文第49頁的“試一試”。請同桌討論探究下面這些題目怎樣計算比較簡便?
1、(80+4)×25
(1)呈現題目。
(2)指導觀察算式特點,看是否符合要求,能否應用乘法分配律計算簡便。
(3)鼓勵學生獨自計算。
2、34×72+34×28
(1)呈現題目。
(2)指導觀察算式特點,看是否符合要求。
(3)簡便計算過程,并得出結果。
3、讓生觀察:36×3
=30×3+6×3
=90+18
=108
師:你能說說這樣計算的道理嗎?
生獨自思考,小組討論,全班交流。
四、總結。
師:說說這節課你有什么收獲?
師:今天同學們通過自己的探索,發現了乘法分配律,你們真的很棒。乘法分配律是一條很重要的運算定律。應用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數學問題,在我們的生活和學習中應用非常廣泛。希望同學們要在理解的基礎上牢牢記住它。
乘法分配律教學設計4
學習內容:
人教版小學四年級下冊第三單元乘法分配律
學習目標:
1、結合具體的情境,嘗試計算,初步認識和理解乘法分配律的含義。
2、通過觀察交流、舉例驗證,概括規律,并能用字母式子表示乘法分配律。
3、通過解決生活中的實際問題,借助乘法的意義進一步理解乘法分配律的內涵。
學習重難點
借助乘法的意義理解乘法分配律的意義和內涵。
配套資源
實施資源:
《乘法分配律》教學課件
學習過程:
一、情境導入,引入新課
師:之前我們已經學習了乘法交換律、結合律,今天這節課我們繼續學習乘法的另一個運算定律。
請同學們認真看下面的題目:有一個長方形的果園,原來寬20米,長80米,擴大規模后,長增加了30米。問:現在這個果園的面積有多大
二、學習新知
①自主探索,獨立解決問題
請大家閉上眼睛想象一下,如果用一幅圖來表示題目的意思,這幅圖會是怎樣的呢
把你想到的圖形畫在練習本上。并試著去解決這個問題。
②匯報交流,明確算法
誰愿意把自己解決問題的方法展示給大家,并說明解決問題的步驟。
③全班反饋(課件動態演示)
先來看第一種方法:
可以先算出擴大規模后果園的長,再算出擴大規模后果園的面積,即(80+30)×20=2200(平方米)
(設計意圖:借助于課件,展示出這道題目的示意圖,進行動態演示,可以讓學生清楚地看到每一步的計算表示的實際意義是什么,對理解另一種方法打下基礎。)
再來看第二種方法,可以先算出果園原來的面積,再算出后來增加的'面積,最后把原來的面積和增加的面積全起來就是果園現在的面積。即80×20+30×20=2200(平方米)
(設計意圖:借助于課件,進行動態演示,讓學生從中清楚地看到這種方法和第一種方法的不同之處,同時又真正的明白,雖然方法不同,但所要求的結果完全一樣)
同學們,你們有什么發現呢大家是不是已經發現了盡管這方法不一樣,但這兩種方法的結果都是一樣的。那就說明(80+30)×20=80×20+30×20(這兩個式子是相等的)
(設計意圖:借助于課件的動態演示,使學生更清楚地看到,兩種方法求出的是同一個結果,同時,更能給學生初步感悟乘法分配律提供一定的幫助。)
②師:剛才擴大規模后的長是增加了30米,現在給大家一次機會,你來決定讓長增加幾米同時請你用兩種方法算一算,看用兩種方法計算出的結果是否一樣
如果我們把果園的寬的米數用圓形來表示,原來的米數用三角來表示,長增加的米數用五角星來表示,上面的式子我們是不是就可以這樣表示了呢
( +▲)×★=×★+▲×★
(設計意圖:利用課件的方便性,在很短的時間給學生展示了不同的數據所計算出的結果都是一樣的,讓課堂節奏更穩,更快,解決問題更高效,同時在一定程度上讓學生的注意力更加集中了。)
③接下來,我們共同來驗證一下,看我們想到的這個式子是不是正確的呢現在這里面原來的長和寬及擴大規模后增加的長的數量都由你來決定填寫,填寫完后,進行計算,驗證,來證明這個等式不僅適用上面的兩個例子,同樣適用于你所舉的例子。
驗證;(100+50)×40=100×40+50×40
結論:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再把積相加。
同學們,你們真厲害,你們所發現的規律在數學上就叫做乘法分配律。用字母表示為a+b)×c=a×c+b×c
三、鞏固練習:
1、請看下面這個算式,(40+8)×25
結合剛才的長方形的面積,你想到了什么
我們可以想象成寬是25米,原來的長是40米,擴大規模后增加的長是8米,因此我們可以先求出原來的面積40×25和增加的面積8×25,合起來就是現在的面積。
2、計算59×20+41×20
師:除了把它們想象成剛才的長方形的面積,還可以想象成什么呢實際上生活中有很多這樣的情況,我們可以把它想象這樣的場景:學校要舉行歌唱比賽,參加的20名同學要統一著裝,老師們先買了20件上衣,每件59元,又買了20條褲子,每條褲子41元,老師買這些衣服一共花費了多少元錢呢
59×20+41×20
=(59+41)×20我們可以先求出一套衣服多少元再乘以
=100×20它的套數,是不是計算更簡單呢
=20xx
親愛的同學們,相信你們通過今天的學習,對乘法分配律已經有了一個初步的認識,今天的課快要結束了,老師留給大家一個問題:如果這道題目問的是原來的面積比增加的面積多多少平方米你認為應該怎樣做呢如果有兩種方法可以解答,你認為這兩種方法之間有聯系嗎請大家認真思考,下節課我們再見!
乘法分配律教學設計5
教學內容
蘇教版《義務教育課程標準實驗教科書數學》四年級(下冊)第54~55頁。
教學目標
1.使學生結合具體的問題情境經歷探索乘法分配律的過程,理解并掌握乘法分配律。
2.使學生在發現規律的過程中,發展觀察、比較、分析、抽象和概括能力,增強用符號表達數學規律的意識,進一步體會數學與生活的聯系。
3.使學生能聯系實際,主動參與探索、發現和概括規律的學習活動,獲得發現數學規律的愉悅感和成功感,增強學習的興趣和信心。
教學過程
一、創設比賽場景,在活動中激趣
談話:聽說我們四(1)班的同學口算速度快,正確率高,想不想顯一顯身手?那我們來一個速算比賽怎么樣?
A組B組
(1)135×6+65×6(1)(135+65)×6
(2)9×37+9×13(2)9×(37+13)
在A組同學不服氣,說B組容易時,教師激趣:是嗎?B組容易?那我們再來一次好嗎?
A組B組
(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125
談話:為什么這次A組又輸了?觀察觀察,可不要冤枉了老師。你們有什么發現?(學生討論交流)
小結:這真是一個了不起的發現。一切數學知識來源于發現問題,而一個偉大的數學家有所成就在于他發現問題。看看今天我們的同學們發現一個怎樣的數學知識。有信心嗎?給自己鼓鼓掌!
談話:同學們,我們學校有5個同學就要去參加“海安縣首屆批發王杯少兒才藝大賽”了,聲樂興趣小組的于老師準備為他們每人買一套一樣的漂亮服裝,我們一起去看看好嗎?
【評析:玩是學生的天性。心理學研究表明:促進人素質、個性發展的最主要途徑是實踐活動,而“玩”正是兒童所特有的實踐活動形式。如何讓學生玩出效果來?教師提供了一個“競賽”的機會,讓學生在“競賽”中發現競賽的不公平,近而尋找不公平的原因,激發了學生學習的興趣。在探究原因的過程中,學生潛移默化地感知了同組算式之間的關系。】
二、創設活動情境,在合作中探究
1.交流算法,初步感知
(課件出示例題情境圖)
談話:從圖中你了解到了哪些信息?于老師可以怎樣搭配服裝?
(1)學生的選擇方法1:買5件夾克衫和5條褲子
一共要付多少元呢?你能解決這樣的問題嗎?學生獨立列式計算。(教師巡視,安排不同方法解答的學生板演,并了解全班學生采用的什么方法)
反饋:你是怎樣解決這一問題的?為什么這樣列式?
組織學生交流自己的解題方法,再分別說說兩個算式的意義。(課件顯示)
談話:兩個算式解決的都是同一個問題,它們的計算結果也相等,那你會把這兩個算式寫成一個等式嗎?
學生在自己的本子上寫,教師巡視。
[教師板書:(65+45)×5=65×5+45×5],讓學生讀一讀。
(2)學生的選擇方法2:買5件短袖衫和5條褲子
提問:買5件短袖衫和5條褲子,一共要付多少元呢?你能用兩種方法解答嗎?
根據學生回答,列出算式:32×5+45×5和(32+45)×5
再問:這兩個算式有什么關系?可以用什么符號把它們連接起來?
[教師板書:(32+45)×5=32×5+45×5]
啟發:比較這兩個等式,它們有什么相同的地方?
2.深入體驗,豐富感知。
現在請每個同學拿出信封中的練習紙,想一想在這幾組算式中,哪些可以用等號連起來(在□里畫=號),哪些不能?當然你可以先計算每組中兩個算式的得數,也可以仔細觀察。
在得數相同的兩個算式中間的□里畫“=”
(1)(28+16)×7□28×7+16×7
(2)15×39+45×39□(15+45)×39
(3)74×(20+1)□74×20+74
(4)40×50+50×90□40×(50+90)
(5)(125×50)×8□125×8+50×8
分組匯報、交流。引導學生說一說:最后兩組為什么不能用等號連起來?有辦法使他們變得相等嗎?(課件顯示修改過程)
談話:你能寫出幾組類似這樣的式子嗎?大家動手寫一寫。(提醒學生認真算一算你寫出的等式兩邊是不是相等)
學生舉例并組織交流。(比較這些等式是否具有相同的特點)
3.反思學習,揭示規律
提問:像這樣的等式,寫得完嗎?像這樣等號左邊和右邊的式子都會相等,這是不是巧合?還是有什么規律存在?
談話:你能用自己的方式把這些等式中存在的規律表示出來嗎?請同學們先在小組里說一說。
如果用a、b、c代表上面等式中的數,這個規律怎樣表示?[板書:(a+b)×c=a×c+b×c板書好適當圖例解釋意思]
小結:同學們發現的這個知識規律,叫做乘法分配律。(板書:乘法分配律)
(課件顯示:兩個數的和與一個數相乘,可以用兩個加數分別與這個數相乘,再把兩個積相加,結果不變,這叫做乘法分配律。)
對于乘法分配律,用字母來表示,感覺怎樣——簡潔、明了,這就是數學的'美!
【評析:深層次的探究,教師不急于點明規律,維持學生的好奇心,通過學生討論,使學生積極主動地去發現總結規律,進一步形成清晰的表象。在此基礎上,讓學生自己再寫出一些符合乘法分配律的等式,既為概括乘法分配律提供更豐富的素材,又加深了對乘法分配律的認識,讓學生體會到成功的快樂。】
三、鞏固內化知識,在實踐中運用
談話:讓我們帶著自己發現的數學知識進入今天的“數學樂園”吧!
1.大顯身手
出示“想想做做”第1題,讓學生在書上填一填。
師:第2題你是怎么想的?
小結:乘法分配律可以正著用,也可以反著用。[補充板書:a×c+b×c=(a+b)×c]
2.生活應用
(“想想做做”第3題)
小結:說說兩種方法的聯系。
3.巧妙運用
(“想想做做”第4題)(同桌一人做一組,做在練習本上)
談話:每組兩道算式有什么聯系?哪一題計算比較簡便?
現在你知道上課開始時為什么B組同學算得快嗎?
小結:乘法分配律可以使計算簡便。
4.明辨是非
我校二年級有3個班,每個班有34人。三年級有2個班,每個班有36人。二三年級一共有多少人?
王小明這樣計算:
(3+2)×(34+36)
=5×70
=350(人)
①觀察一下,你贊同王小明的算法嗎?為什么?
②要用乘法分配律,要有什么條件?
5.巧猜字謎
猜一猜,等號后邊是三個什么字?
人×(1+2+3)=
6.大膽猜想
如果把乘法分配律中的加號改成減號,等式是否依然成立?根據乘法分配律,你能提出新的猜想嗎?
學生小組交流猜想。
談話:我們再回到課開始的那條題目上,如果于老師想知道“買5件夾克衫比5件短袖衫貴多少元?”你能幫她嗎?試試看!
教師組織、引導學生總結得出:
(a-b)×c=a×c-b×c
小結:大家真了不起!讓我們為自己的偉大發現熱烈鼓掌吧!
【評析:例題的第三次變式,為學生的猜想提供了素材,也讓本課學生的探究得到延伸,拓展了“乘法分配律”的意義。練習的設計層次清楚,重點突出,形式活潑,有效地促進學生知識的內化。】
四、回憶梳理知識,在反思中總結
今天這節課,你有什么收獲?
五、布置作業:“想想做做”第5題。
乘法分配律教學設計6
教學目標:
1、使學生在探索的過程中,能自主發現乘法分配律,并能用字母表示。
2、通過觀察、分析、比較,培養學生的分析、推理和概括能力。
3、發揮學生主體作用,體驗探究學習的快樂。
教學重點:指導學生探索乘法的分配律。
教學難點:乘法分配律的應用。
教學準備:課件、口算題、例題、練習題等。
教學策略:本節課的學習我主要采取自主探究學習,把問題教學法,合作教學法,情境教學法等結合運用于教學過程中。使學生自主、勇敢地體驗嘗試和實踐活動來進行綜合學習。
教學流程:
一、設疑導入
師:同學們,上節課我們學習了乘法結合律和乘法交換率。誰來說一說,掌握乘法結合律和乘法交換率有什么作用?
生:可以使計算簡便。
師:同意嗎?(同意。)接下來我們做幾道口算題,看誰做得又對又快。其他同學快速判斷。(生口算。)
【設計意圖:這樣開門見山的導入,不但可以鞏固舊知,為新課作鋪墊,而且當學生快速口算到新課題時,會出現一種戛然而止的效果,出現問題情境,從而自然導入新課。】
二、探究發現
1。猜想。
師:同學們算得很快,看看下道題你們能不能很快算出來。(出示:(10+4)×25。)
師:這道題算得怎么不如剛才的快啊?
生:它和前面的題目不一樣。
師:好,我們來看一下它與前面的題目有什么不同?
生:前面的題都是乘號,這道題既有乘號還有加號。
生:前面的算式都是3個數相乘,這個算式是兩個數的和同一個數相乘。
師:這道題含有不同運算符號了,有能口算出來的嗎?說說你的想法。
生:(10+4)×25=10×25+4×25。
師:為什么這樣算哪?
生:我是根據乘法分配律算的。
師:你是怎么知道的?你知道什么是乘法分配律嗎?
生:我是從書上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。
師:你自學能力很強,但對乘法分配律的內涵還不了解,這節課我們就來探究乘法分配律好嗎?(板書課題:乘法分配律。)
2。驗證。
師:同學們看兩個數的和同一個數相乘,如果可以這樣計算的話,那可簡便多了。到底能不能這樣計算,我們來驗證一下。請同學們在練習本上分別算出這兩個算式的結果,看看是否相同。(生活動計算。)
師:說說你有什么發現。(兩個算式的結果相同。)說明這兩個算式關系是什么?(相等。)
小結:通過驗證,這道題確實可以這樣算,那是不是所有的兩個數的和同一個數相乘的算式都可以這樣計算呢?通過這一個例子能下結論嗎?(不能。)那怎么辦?(再舉幾個例子。)好,下面請每個同學再舉幾個這樣的例子,看看是不是所有的兩個數的和同一個數相乘都可以這樣計算?
師:由于時間關系,老師就寫到這里,通過舉例我們可以發現,兩個數的和同一個數相乘都可以這樣計算。有沒有舉出例子不能這樣計算的?(沒有。)一個例子不能說明問題,我們全班同學舉了這么多例子,還有沒寫的用省略號表示。我們都得到了同樣的結論。下面請同學們觀察黑板上的幾組等式,看看你們得到的結論是什么?
3。結論。
生:兩個數的和同一個數相乘,可以用這兩個加數分別同這個數相乘,再把它們的積相加,結果不變。
師:同學們真聰明,你們知道嗎?這就是乘法的'第三個運算定律“乘法分配律”。(出示課件,學生齊讀分配律的意義。)
師:如果老師用a、b、c表示兩個加數和乘數,你能用字母表示乘法分配律嗎?
(a+b)×c=a×c+b×c
師:回到第一題,看來利用乘法分配律,確實可以使一些計算簡便。接下來,我們利用乘法分配律計算幾道題。
【設計意圖:在探究乘法分配律的過程中,讓學生經歷了一次嚴密的科學發現過程:猜想——驗證——結論。為學生的可持續學習奠定了基礎。】
三、練習應用
(生練習應用定律。)
師:通過這兩道題的計算,我們可以看出,乘法分配律是互逆的。為了使計算簡便,我們既可以從左邊算式得到右邊算式,又可以從右邊算式得到左邊算式。但遇到實際計算時,要因題而異。
四、總結
師:本節課我們學習了乘法分配律,看到乘法分配律,你們能聯想到什么呢?(兩個數的差,同一個數相除都可以應用這樣的方法。)
反思:
本課的學習要使學生理解和掌握乘法分配律,并能正確地進行表述。讓學生參與知識的形成過程,培養學生概括、分析、推理的能力,并滲透從特殊到一般,再由一般到特殊的認識事物的方法。本節課的教學較好地貫徹了新課程標準的理念,主要體現在以下幾點:
一、主動探究,實現親身經歷和體驗
現代教學論認為:學生的學習過程應是學習文本批判、質疑和重新發現的過程,是在具體的情境中整個身心投入到學習活動,去經歷和體驗知識形成的過程,也是身心多方面需要的實現和發展過程。本節的教學中,我從口算導入新課,引出(10+4)×25這樣一個特殊的算式。接下來,讓學生猜想它的簡算方法,然后讓學生通過計算來驗證方法的可行性,再讓學生舉例驗證方法的普遍性,最后由學生通過觀察、討論、發現、歸納總結出乘法分配律。整個過程中,我不是把規律直接呈現在學生面前,而是讓學生通過自主探索去感悟發現,使主體性得到了充分發揮。在這個探究過程中,學生經歷了一次嚴密的科學發現過程:猜想——驗證——結論——聯想。為學生的可持續學習奠定了基礎。
二、多向互動,注重合作與交流
在數學學習中,學生的思維方式、智力、活動水平都是不一樣的。因此,為了使不同的學生在數學學習中都得到發展,教師在本課教學中立足通過師生多向互動,特別是通過學生與學生之間的互相啟發與補充,來培養他們的合作意識,實現對“乘法分配律”這一運算定律的主動建構。學生對“乘法分配律”的建構過程,正是學生個人的方法化為共同的學習成果,共同體驗成功的喜悅,生命活力得到發展的過程。正所謂“一枝獨秀不是春,百花齊放迎春來”。
乘法分配律教學設計7
一、教材依據
義務教育課程課程實驗教科書(北師大版)小學數學四年級上冊第三單元《乘法》探索與發現(三)乘法分配律(教材48、49頁)
二、設計思想
“乘法分配律”的內容,被作為學生探究活動的題材,編排在《乘法》單元的“探索與發現”一節中,意在通過學生經歷數學規律的探索過程,體驗探索數學規律的基本步驟。根據教科書的編寫意圖,我在設計這節課時,力圖在教學目標、教學方式及學生的學習方式等幾個方面有所創新、有所突破。
在在教學目標的確定上,主要是通過經歷探索乘法分配律的活動,發現乘法分配律,希望通過數學活動,為學生提供充分探究的空間,使學生經歷知識的形成過程,體現探究性學習的特征和要求。同時通過探究活動,引導學生用數學的'思維方式、沿著“發現——猜想——驗證——總結——應用”的軌跡去發現、去探索,經歷探索數學規律的過程,達到啟迪數學思想方法的目的。教學的重難點定位為引導學生在探索活動中發現、感悟、體驗數學規律,進而學會應用規律。
三、教學目標:
1、經歷探索的過程,培養學生觀察、歸納、概括等初步的邏輯思維能力;
2、理解和掌握乘法分配律并會用字母表示;
3、能夠運用乘法分配律進行簡便計算;
4、使學生欣賞到數學運算簡潔美,體驗“乘法分配律”的價值所在,從而提高學習數學的興趣和學習數學的主動性。
四、教學重點:
引導學生運用數學思維方式探索乘法的分配律,歸納乘法分配律。
五、教學難點:
乘法分配律的應用,進行一些簡便計算。
六、教學準備
多媒體教學課件
七、教學過程
(一)情境導入,發現問題
昨天,老師和兩位小朋友去參觀了正在裝修中的學生食堂三樓多功能教室,善于觀察的小朋友給我們帶來了一道數學問題,你們能不能幫忙解決下?
課件出示:圖片一共貼了多少塊瓷磚?
(1)誰能估一估,貼了多少塊瓷磚?
(2)誰來用自己的方法來驗證估計是否正確?
還有不一樣的方法嗎?誰來說說看?(生口答,師板書)
板書:6×9+4×9(6+4)×9
=54+36=10×9
=90(塊)=90(塊)
(3)請同學們觀察,看看有什么發現?(學生討論,匯報)
(二)引導探究,發現規律
1、猜想、驗證
(1)能不能利用你的發現舉些例子來呢?
生:舉例
(2)提出猜想:還有更多的算式嗎?是不是所有的算式都具有這一規律呢?
(學生小組合作嘗試,進行探索)
2、概括、歸納
(1)說說你們剛才驗證的情況。
生1:我按照這個規律寫出的兩個算式是:7×5+3×5和(7+3)×5的得數都等于50。
生2:我按照這個規律寫出的兩個算式是:42×64+42×36和42×(64+36)的得數都等于250。
生3……
生4……
(2)看來這個規律是普遍存在的。其實我們發現的這個規律叫做乘法分配律。剛才我們舉了很多這個規律的例子,這樣的例子能列舉完嗎?
問:我們能不能用一個式(字母)把乘法分配律表示出來呢?
生:(a+b)×c=a×c+b×c
(3)等號表示什么意思?(這個等式反過來也成立)
(三)加強應用、深化理解
我們發現了乘法分配律,它又有怎樣的應用呢?
(課件分步出示練習)
1、填一填(課本49面練一練第一題)
2、請同桌同學合用研究下面這些題目,怎樣計算比較好?
(80+4)×2534×72+34×28
(1)學生討論研究;
(2)匯報計算方法,重點說為什么這樣算;
(3)小結:通過研究,應用乘法分配律可以使一些計算簡便。
(四)鞏固練習、解決問題
(課件分步出示)
1、填一填
(10+7)×6=__×6+__×6
8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)
2、同桌合作研究下面這些題目,怎樣計算比較好?
(80+4)×2534×72+34×28
2、下面這些題,能用簡便方法計算嗎?怎樣計算?
(20+4)×2532×(200+3)38×29+38×1
39×10138×29+3825×41
(五)課堂小結
1、說說今天我們研究了什么?
2、大家想一想,我們是怎樣發現乘法分配律的呢?
3、乘法分配律有什么應用?
乘法分配律教學設計8
教學內容:蘇教版四年級(下)運算律——乘法分配律
教學目標:
1、讓學生經歷乘法分配律的探索過程,理解并掌握乘法分配律。
2、初步了解乘法分配律的應用。
3、在學習活動中培養學生的探索意識和抽象概括能力。
教學重點:在解決實際問題的過程中,理解并掌握乘法分配律的意義。
教學難點:正確表述乘法分配律,并能理解運用乘法分配律進行簡便計算的理由。
教學過程:
一、比賽激趣,引入新課。
(1)、同學們,學習新課前,我們先來一個小小的數學熱身賽,看誰算的又對又快。
7×4×25 125×9×8 48+315+52 888+17+83 125×8
(2)、評出勝負,分析原因。
(3)、小結:運用乘法結合律和乘法交換律可以使計算簡便,今天我們繼續探索乘法的另一定律《乘法分配律》(板書課題)
二、初步感知乘法分配律。
1、解決以下實際問題。
問題一:育新學校馬上要舉行藝術節比賽了,老師準備給他們每人買一套服裝,我們一起去看看好嗎(課件出示例題情景圖)
短袖衫32元/件褲子45元/件夾克衫65元/件
(1)提問:要買5件夾克衫和5條褲子,一共要付多少元呢你能解決這樣的問題嗎請同學們在自己的本子上列出綜合算式,再算一算。
(2)學生動手,獨立算出要付的錢數。
(3)教師巡視,讓用65×5+45×5和(65+45)×5兩種不同方法解答的學生分別口答。并說明解題思路。
板書:(65+45)×5 65×5+45×5
問題二:一塊長方形的菜地長64米,寬26米,求周長。
(1)學生動手,獨立算出周長。
(2)教師巡視,讓用64×2+26×2和(64+26)×2兩種不同方法解答的學生分別口答。并說明解題思路。
板書:64×2+26×2 (64+26)×2
三、探索規律。
1、板書:(65+45)×5=65×5+45×5
(64+26)×2=64×2+26×2
2、體驗感悟
(1)、談話:請同學們觀察這兩個等式,你發現它們有什么共同的特點嗎
(2)在學生回答的基礎上,教師根據情況相機引導:等號左邊先算什么,再算什么右邊呢
3、類比展開。
提問:你能根據剛發現的特點編幾組等式嗎
學生編寫,教師巡視后全班交流。
4、揭示規律。
(1)用語言表述:兩個數的和與另一個數相乘,等于這兩個數分別與另一個數相乘再相加;
如果有學生答得比較到位:把他的話再重復一遍的。
(2)談話:如果現在要用字母來表示這個規律,你們認為應該用幾個字母呢(3個)
我們就用a、b、c這三個字母來表示
(3)引導:如果在第一個等號的左邊我用a來表示65,b來表示45,c來表示5就可以寫成這樣的'形式:
板書:(a+b)×c
(4)追問:那么等號的右邊應該怎么來表示呢
學生獨立完成。
學生口答后板書:(a+b)×c=a×c+b×c
四、應用規律。
練習課本56頁第一,二習題
五、拓展延伸。
1、看看前面買服裝的問題,根據提供的信息,除了可以求一共要付多少元之外,還可以提出什么數學問題
(1)出示:5件夾克衫比5條褲子貴多少元
怎樣列式還可以怎樣列式出示:60×5-50×5 (60-50)×5
(2)思考:這兩道算式等不等呢你怎么知道相等的
這個等式和我們發現的乘法分配律的形式一樣嗎哪兒不一樣
(3)如果老師是這樣買的,
出示:買5件夾克衫、5條褲子和5件短袖衫,一共要付多少元怎樣列式還可以怎樣列式出示:
60×5+50×5+30×5 (60+50+30)×5
(4)這兩道算式等不等呢
這個等式和我們發現的乘法分配律的形式一樣嗎
2小結:乘法分配律不僅適用于兩個加數相加,還適用于兩個數相減,甚至是多個數相加或相減。同學們掌握了這些知識后相信在今后的計算中會更加簡便快捷。
六、全課小結
你今天這節課學到了什么
請大家想一想,我們是怎樣發現乘法分配律的呢
今天,我們通過猜想、舉例、總結、應用發現了乘法分配律,今后,同學們還可以運用這種數學思維去研究其他的數學知識。
乘法分配律教學設計9
教學目標:
1、通過探索乘法分配律中的活動,學生進一步體驗探索規律的過程,初步學習體會提出猜想的方法及類比,說理,舉例論證的方式,發展學生的思維力,創造力,《乘法分配律》教學設計。
2、引導學生在探索的過程中,自主發現乘法分配律,并能用字母表示。
3、能夠運用乘法的分配律進行簡便計算。
重點、難點:
重點:學生參與推導乘法分配律的過程。
難點:乘法分配律的推理及運用。
教學過程:
一、比賽激趣,提出猜想.
(1)同學們,學習新課前,我們先來一個小小的數學熱身賽。請大家準備好紙和筆。 (請看大屏幕,左邊的兩組同學做A組的題,右邊的兩組做B組的題,看誰做的又對又快,開始)
9×( 37+63) 9×37 + 9×63
(2)評出勝負。(做完的同學請舉手,匯報計算過程。可以看出左邊的同學做得比較快,(問同學)你們有什么意見嗎?)剛才的計算中你發現這兩道題有什么關系嗎?
教師讓學生比較兩個算式的異同點,并指名說一說自己找出的規律。
引導學生發現:這兩個算式的運算順序不同,但結果相同,兩道題其實可以互相轉化,可以用一個等式表示:9×( 37+63) =9×37 + 9×63
(3)將學生的發現以他(她)的名字命名為“**猜想”。
【設計意圖:在課的.開始,組織數學熱身賽能調動學生的學習積極性。】
二、引導探究,發現規律。
1、(我們下面就一起來驗證一下這位同學的猜想在其它的題里也是否成立?請看大屏幕。)昨天,老師去超市里買東西,看到下面這些物品。橙子每箱28元,蘋果每箱22元。如果橙子和蘋果各買3箱,一共需要多少錢?
(1)全班同學獨立完成。
(2)誰愿意把自己的方法說給大家聽聽。(生回答,師板書)
還有不一樣的方法嗎?誰來說說看?(生回答,師板書)
算式(28+22)×3 和28×3+22×3的每一步各表示什么?誰能說給大家聽聽?
(3)觀察這兩個算式,你有什么發現?
引導學生比較兩個算式異同點,并指名學生說一說自己
生:這兩個算式的得數是一樣的。
師:是的,雖然他們的格式不同,但他們的得數相同,所以我們可以用一個符號把這兩個算式聯系起來。
生:等于號
師:對,用等于號相連,表示這兩個式子是相等的,一起讀一讀,認識這兩種方法的結果是一樣的,所以( 35+25)×3=35× 3+25×3
師:再和前面的一組式子一起觀察,
9×( 37+63)=9×37 + 9×63
(讓學生通過讀,感悟到左邊是兩個數的和乘一個數,右邊的兩個數的積加上兩個數的積)
2、舉例驗證,進一步感受
認真觀察屏幕上的這個等式,你還能舉出幾個類似的例子來驗證嗎?(板書:舉例)
(1)驗證方法:要求每人出兩組算式,數字隨意舉例,可以使用計算器進行計算,驗證你舉的例子是否相等,教案《《乘法分配律》教學設計》。然后拿到小組內交流(學生小組合作交流,教師巡視指導。)
(2)學生回報:誰來說一說自己舉的例子。
(3)同學們,請看一看這三個同學舉的例子,每組的結果都是相同的,我們就可以用等號把它們連接起來。(板書)
(4)輕聲讀這些等式,你發現了什么?
3、歸納總結,概括規律。
(1)現在誰能說一說這些等式有什么共同特點?(板書:總結)(運算順序不同但結果相同)
(2)從剛才的舉例過程中,你能發現乘法運算中的規律嗎?
學生回報。
(電腦出示:兩個數的和與一個數相乘,可以用兩個加數分別與這個數相乘,再把兩個積相加,結果不變。這叫做乘法的分配律。)
同學們發現的這個知識規律,叫做乘法分配律。(板書:乘法分配律)
(3)如果用a、b、c分別表示三個數,你會用字母表示乘法分配律嗎?
結合學生回答,教師板書:(a+b)×c=a×c+b×c
齊聲讀兩遍。
(4)對于乘法分配律,用字母來表示,感覺怎樣。
引導學生發現:字母表示的式子簡潔、明了,這就體現了數學的美。
三、加強應用、深化理解
1、瞻前顧后填一填。
(10+7)×6=□×6 + □× 6
8×(125+9)=8×□+ 8×□
7×48+7×52=□×(□ + □)
2、火眼金睛看一看:
判斷下面算式是否正確?并說明理由?
56×(19+28)= 56×19+28 ( )
32×(7×3)= 32×7+32×3 ( )
25×12+12×75 = 12×(25+75) ( )
25×99+25 =(99+1)×25 ( )
3、利用乘法分配律,計算下列各題。 ( 80 + 4 ) ×25 34 ×72 + 34 ×28 師小結:通過這兩道題的計算,我們可以看出,乘法分配律是互逆的。為了使計算簡便,我們既可以從左邊算式得到右邊算式,又可以從右邊算式得到左邊算式。但遇到實際計算時,要因題而異。
4、找朋友
(10+6)×4 10 ×4+6 10 ×4+ 6 × 4
5 ×(7+9) 5 ×7+ 5× 9 5 ×7× 9
3 ×25+7 ×25 3+7×25 (3+7)×25
5、對口令
師:如果一個同學說出乘法分配律的左邊部分,那你就說出它的右邊部分,如果他說出的是右邊部分,你就對出左邊部分。看誰反應快。
6、腦筋急轉彎。
猜一猜,等號后邊是三個什么字?
木×(1+3+2)=?
四、總結:
1、回憶一下,這節課你學會了什么?
2、如果把乘法分配律中的加法改成減號,等式是否依然成立?根據乘法分配律,你能提出新的猜想嗎?同學們課后交流一下,下節數學課我們再繼續研究。
乘法分配律教學設計10
教學目標
1.使學生理解乘法分配律的意義.
2.掌握乘法分配律的應用.
3.通過觀察、分析、比較,培養學生的分析、推理和概括能力.教學重點:乘法分配律的應用
教學難點:乘法分配律的反應用.
教具:教學課件一套
教學過程:
一、比賽激趣,提出猜想
(1)、同學們,學習新課前,我們先來一個小小的數學熱身賽。請大家準備好紙和筆。 (請看大屏幕,左邊的兩組同學做第一小題,右邊的兩組做第二小題,看誰做的又對又快,開始)
7×28+7×72
7×(28+72)
(2)、評出勝負。(做完的同學請舉手,匯報計算過程。可以看出右邊的同學做得比較快,(問同學)你們有什么意見嗎?這兩道題有什么聯系嗎?)
這兩道題運算順序不同,但結果相同,可以用一個等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
這位同學說的`非常好,我們就先將他的這個發現命名為××猜想。(板書:猜想)
二、引導探究,發現規律。
1、我們下面就一起來驗證一下這位同學的猜想在其它的題里是否也成立。
2、商場 “五一”舉行讓利大折扣,王老師趁這機會去為參加校園歌手比賽的五位同學挑選服裝,請看大屏幕:(出示情境圖)
(1)看到這幅圖畫,你了解到了什么信息?你想提什么問題?
(2)你能用兩種方法列出綜合算式嗎?
(3)學生獨立列式,教師巡視
(4)交流反饋:你是怎么想的,怎樣列式計算
板書:65×5+45×5 (65+45)×5
(5)觀察這兩個算式,你有什么發現?
3、舉例驗證,進一步感受
認真觀察屏幕上的這個等式,你還能舉出含有這樣規律的例子嗎?(板書:舉例)
把自己舉出的例子在練習本上寫一寫,誰來說一說自己舉的例子,我們一起來驗證一下等號左右兩邊是否相等。(可舉三個例子)輕聲讀這些等式,你發現了什么?
4、歸納總結,概括規律。
(1)現在誰能說一說這些等式有什么共同特點?(板書:總結)(運算順序不同但結果相同)
(2)剛才我們用舉例的方法驗證了××猜想,在舉例的過程中有沒有發現與結果不一樣的例子?能不能舉一個這樣的反例。
(3)看來這個規律是普遍存在的,××同學,恭喜你!你的猜想是正確的。這個規律在數學上叫做乘法分配律。(板書)
(4)像這樣的等式寫得完嗎?你能用自己的方式把這些等式中存在的規律表示出來嗎?請同學們先在小組里說一說。
反饋時引導學生用不同的方式表達。(學生可能用語言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用語言敘述:兩個數的各乘第三個數,可以把這兩個數分別和第三個數相乘,再求和。
(5)大屏幕出示關于乘法分配律的總結,學生齊讀。
三、探索發展,應用規律
(1)、我們發現了乘法分配律,那么它對我們的計算有什么幫助呢?(板書:應用)(學生舉例說)
(2)對,應用乘法分配律可以使一些計算簡便,請同桌合作研究下面這些題目怎樣計算比較好?請看大屏幕:誰來讀一下題。
(8+4)× 25 34 ×72+34 ×28
(完后讓學生匯報計算方法,重點說這兩題都應用了什么運算定律。)
四 、鞏固內化
1、 做“想想做做”第1題
學生獨立填寫,指名報,全班共同校對。
明確:根據什么這樣填寫?第1題和第2題在乘法分配律的應用上有什么不同的地方?
2、 做“想想做做”第2題
學生自己判斷。然后請生說說判斷的依據。
3、 做“想想做做”第3題
讓每位學生都用兩種方法計算長方形的周長,指名板演。
明確:這兩種算法有什么聯系?符合什么規律?
小結:通過長方形周長兩種計算方法的比較,也說明了乘法分配律的合理性。另一方面也使我們看到,乘法分配律我們早已不自覺地在運用了。
4、 做“想想做做”第4題
讓學生各自按運算順序計算,指定兩人板演,共同訂正。
提問:每組兩道算式有什么聯系?哪一題的計算比較簡便?
小結:有時是先乘再求和比較簡便,有時是先求兩數的和再乘比較簡便,大家要根據實際情況的不同,靈活對待。
五、 總結回顧
乘法分配律教學設計11
教學目標:
1、通過經歷探索乘法分配律的活動,發現并理解乘法分配律。
2、通過觀察、分析、比較,培養學生初步的分析、推理、抽象概括能力。
3、滲透“從特殊到一般”的數學思想和方法。
教學重點:指導探索乘法分配律。
教學難點:發現并歸納乘法分配律。
教具:課件
教學過程:
一、創設情境,生成問題。
師:同學們,上節課我們研究了乘法的交換律和結合律,那乘法還有其他的運算律嗎?希望今天通過我們的努力,能有新的發現。
出示問題一、一個長方形的長是72米,寬是28米,這個長方形的周長是多少?
師:你能用幾種方法解答?
生1:(72+28)×2
生2:72×2+28×2(板書兩個算式)
師:同學們給出了兩種辦法,那這個長方形的周長到底是多少呢?選擇其中的一個算式計算一下。
生計算。
師:請選擇第一個算式的同學,說出你的計算結果。
生:長方形的周長是200米。
師:誰選擇的第二個算式,結果又是多少呢?
生:我算的結果也是200米。
師:通過大家的計算,這兩個數算式的結果相同,我能不能在這兩個算式之間寫上“=”?
生:可以
板書:(72+28)×2=72×2+28×2
出示問題二:學校要換夏季校服了,上衣每件32元,褲子每件18元,四年級一班共64人,一共需要多少元?
師:這道題你有能用幾種方法解答?結果是多少?
(生計算,匯報)
生1:我列的算式是32×64+18×64,結果是6400元。
師:有沒有用不同的方法的?
生2:我列的算式是:(32+18)×64,結果也是6400元。
師:兩種不同的方法,得出的結果卻是相同,那這兩個算式看來也是相等的。
板書:(32+18)×64=32×64+18×32
師:請同學們觀察我們剛才得到的兩個等式,你有怎樣的感覺?
生:可能有規律。
師:真的有規律嗎?
【評析:教師創設了求長方形的周長和學校買校服的情境,提出“你能用幾種方法解答?學生很快地按要求用兩種不同的`方法列出算式,并且能夠輕而易舉地得出兩式相等。在以上兩個問題的解決中,讓學生在經歷了兩種不同思考方法的計算后,便于學生發現新的知識規律。同時,產生這樣一種數學體驗,即乘法分配律的知識存在于實際問題的解決中。】
二、探索交流,歸納規律。
師:剛才同學們感覺到這兩個等式中含有規律,下面把你的想法在小組內交流一下吧。
師:對于可能存在的規律,僅憑這兩個等式就能說明它是成立的嗎?
生:不能。
師:那該怎么辦?
生:找更多的這樣的等式。
師:既然找到了方法,那就請同學們,再找出一些這樣的式子,驗證它們的結果是否相等。
(生舉例驗證)
匯報:
生1:(3+2)×5=3×2+2×5
師:你計算過了嗎?
生1:算了,兩邊的結果都是30.
師:很好,其他同學還有嗎?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
師:同學們都找到了這樣的式子嗎?
生:是。
師:看來同學們頭腦中的那個規律可能真的存在。我們舉了這么多的例子,兩邊的結果都是相等的,可是,萬一除了咱們舉得這些例子外有一個不能成立?那我們舉得這么多例子也就失敗了。我們能不能換個角度去看,我們不去計算,就能夠判斷兩個式子的結果是否相同?
(生思考)
生:老師,我能。
師:你說說看。
生:比如(72+28)×2=72×2+28×2,左邊括號里算出是100,就表示100個2,右邊是72個2加上28個2,也是100個2,所以兩邊的結果一定是相等的。
師:同學們,你聽明白了嗎?
生:明白了。
師:那你能用這個思路說說你舉得例子嗎?
生1:我寫的是(53+22)×4=53×4+22×4,左邊是75個4,右邊是53個4加上22個4,也是75個4
……
師:現在我們再來思考,有沒有可能像這樣的式子兩邊不相等?
生:不可能,兩邊的結果一定相等。
【評析:學生在已經初步得出規律的基礎上,教師并沒有急于讓學生說出規律,而是繼續為學生提供具有挑戰性的研究機會:“請你再舉出一些符合自己心中規律的等式”,繼續讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內在的規律,從而概括出乘法分配律。這樣既培養了學生的猜想能力,又培養了學生驗證猜想的能力。學生通過自主探索去發現、猜想、質疑、感悟、調整、驗證、完善,主體性得到了充分的發揮。】
師:這么看來,同學們猜測的那個規律是真的存在,你能用自己的方式表示出你認為的規律嗎?
生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。
生2:(爸爸+媽媽)×我=爸爸×我+媽媽×我。
生3:(A+B)×C=A×C+B×C
生4、(a+b)×c=a×b+a×c
生5、(○+□)×◎=○×◎+□×◎
師:同學們真了不起,通過努力驗證了這個規律,你覺得用那一種表示這個規律更好一些?
生:第三個用小寫字母的那一個。
師:你為什么覺得這個好?
生:這樣簡單好記,而且前面學的交換律和結合律也是用字母表示的。
師:我也同意你的觀點,這就是咱們數學的簡潔美的體現。這個規律就是乘法的分配律。讀一讀這個式子。
(通過讀式子,完善語言表達)
【評析:教師對于乘法分配律的教學,教師不是把重點放在數學語言的表達上,而是把重點放在讓學生在多個算式的計算中去完整地感知,通過觀察、比較和歸納,大膽用自己喜歡的方式表示出來……。學生經過這樣的探究活動,才能建構對自己有意義的知識,用語言表達乘法分配律也就水到渠成】
三、鞏固應用,內化提高
1、火眼金睛,判對錯。
56×(19+28)=56×19+28
64×64+36×64=(64+36)×64
32×(3×7)=32×7+32×3
2、思維敏捷,連一連。(把結果相同的兩個式子連起來)
①(42+25+33)×26 ①20×25+4×25
②36×15-26×15 ②(66+34)×66
③66×66+66×34 ③42×26+25×26+33×26
④38×99+38×1 ④(36-26)×15
⑤(20+4)×25 ⑤38×(99+1)
師:相等的式子我們都找到了,請你選擇其中的一組計算出它們的結果。
生1、我算的是(20+4)×5=20×25+4×25,結果是600.
師:你是把兩邊的式子都計算了嗎?
生1:沒有,我是算的右邊的那個式子。
師:你為什么沒用左邊的式子計算呢?
生1:右邊的那個式子計算起來簡單。
師:看來乘法分配律還可以用來簡便計算,提高我們的計算速度。
生2:我算的是38×99+38=38×(99+1),結果是3800,我算的是右邊的那個式子,右邊的括號里是100,38×100好算。
師:大家來觀察這個式子,這是我們發現的那個乘法分配律嗎?
生1:不是.
生2:是,就是把它給倒過來用的。
師:是的,這是乘法分配律的逆應用,也可以用來簡化計算。
生3:我算的是36×15-26×15=(36-26)×15,結果是150,是通過右邊的式子計算出來的,那樣簡便。
師:看了這個等式,你有什么想說的?
生:我們剛才做的都是帶“+”的,可是這個是“-”。
師:看來我們的乘法分配律還有新的內涵呢。
補充板書:(a-b)×c=a×c-b×c
師:有沒有計算(42+25+33)×26=42×26+25×26+33×26這個等式的?
生4:我算了,結果是2600,算的是左邊的那個式子。
師:看了它,你有沒有想說的?
生:剛才我們做的都是兩個數的和與一個數相乘,這個題是三個數的和與一個數相乘。
師:如果是4個、5個數、更多數的和與一個數相乘,還能用分配律嗎?
生:能。
3、合理選擇,算一算。
312×12+188×12
101×87
(53+47)×23
【評析:練習題的設計綜合性、層次性強,特別是第2題設計的非常巧妙,既對乘法分配律的基本形式進行了練習,又對乘法分配律可以使計算簡便和乘法分配律的拓展形式,讓學生有了初步感知,把學生引入更廣闊的數學探索空間。讓學生體驗到數學知識內在的魅力,培養了學生的數學學習興趣。】
四、拓展延伸,引發思考。
這節課我們共同來研究了乘法分配律,除法有沒有分配律呢?
板書:(a+b)÷c=a÷c+b÷c ?
同學們可以課后用我們今天研究乘法分配律的方法進行驗證,總結。
【總評:乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律也是學生較難理解和敘述的定律。在本節課教學設計上教師注重了從學生的實際出發,把數學知識和實際生活緊密聯系起來,讓學生在不斷的感悟和體驗中學習知識。注重引導學生在自主探索的活動中,感悟和發現乘法分配律,變教學生“學會”為指導學生“會學”。教學中,通過讓學生用兩種不同的方法解決實際問題,在兩個不同的算式之間建立起聯系,讓學生初步感知乘法分配律。之后,給學生提供體驗感悟的空間,讓學生寫出符合規律的式子,引導學生在研究討論中,進一步形成清晰的表象。在此基礎上,讓學生自己再寫出一些符合乘法分配律的等式,既為概括乘法分配律提供更豐富的素材,又加深了對乘法分配律的認識。隨后的練習設計層次清楚,重點突出,形式活潑,有效地促進學生知識的內化。這些教學活動使學生經歷了知識的形成過程,有利于學生改善學習方式。讓學生親歷觀察、歸納、猜測、驗證、推理等探究發現的全過程,學生不僅發現乘法分配律的知識,而且學習到了科學探究的方法,數學思維能力得到了發展。】
乘法分配律教學設計12
教學內容
義務教育課程標準數學(人教版)四年級下冊第36頁例題3乘法分配律
教材分析
本內容是乘法運算定律的最后一個內容,它是本單元的教學重點,也是本節課的教學難點。學生對該知識點的感性認識遠遠不夠,且定律的敘述又比較繁瑣。教材是按照提出“一共有多少名同學參加了植樹”問題、列式解答、觀察比較、總結規律等層次進行的。從例題3的知識點看主要是乘法分配律及用字母表示的2種情況,但從做一做中體現出了把乘法分配律從右往左運用的情況。通過課堂的學習,讓學生經歷發現歸納乘法分配律的過程,理解和掌握乘法分配律,初步感受運用乘法分配律能進行一些簡算。
學情分析
本課的'教學內容是在學生已經學習掌握了乘法交換律、結合律,并能初步應用這些定律進行一些簡便計算的基礎上接著學習的,但本節內容對于學生來說是概況、歸納能力的一個薄弱環節,而乘法分配律又是學生以后進行簡便計算的前提和依據,對提高計算能力有著重要的作用,故對本節課的教學設計要求更高。
教學目標
1、讓學生經歷發現歸納乘法分配律的過程,理解和掌握乘法分配律。
2、使學生感受數學與現實生活的聯系,初步感受運用乘法分配律能進行一些簡便運算。
3、培養學生自主參與意識和主動探究精神,同學間通過合作交流獲得成功的體驗。
教學重點
理解乘法分配律的意義。
教學難點
發現與歸納乘法分配律。
教學準備
課件習題卡
教學過程
一、結合實事創設情景,引入新課
1、課件出示干旱圖片,使生感受到節約用水,從我做起,從現在做起!
2、課件出示問題(一):一號井5噸/小時、二號井10噸/小時,兩口井一共出水多少噸?請生用不同的方法列出綜合算式(師相機板書),說出算理并計算,發現兩種方法表示的意義和結果相同,得出可以用“=”連接兩個算式。接著請同學感受用那種方法計算更快?
3、課件出示問題(二):共有25個小組,每組4人挖坑、種樹;2人抬水、澆樹,一共有幾名同學參加植樹?請生用不同的方法列出綜合算式(師相機板書),說出算理,猜測結果,計算驗證得出結果相同,同樣可以用“=”連接兩個算式。請同學感受用那種方法計算更快?
二、合作交流,探索發現新知
1、引出課題。通過觀察得出2個等式都是由3個數組合而成的,這樣的等式有什么樣的規律呢?這就是我們今天要探究的新知——乘法分配律。
板書:乘法分配律
2、發現和歸納乘法分配律
(1)請同學們觀察這2個等式,等號左邊、右邊是怎么算的?請生算一算,把你的發現和同桌說一說好嗎?
(2)請同學自己任意用三個數試著組成這樣的算式,驗證是否都具有這樣的規律呢?
(3)生舉例并展示,共同驗證并讀一讀式子。
(3)具有這樣特征的式子能舉得完嗎?討論是否存在不符合這樣規律的式子?
(4)同桌互相試著說一說規律,請生匯報,總結得出乘法分配律,請生打開書P36讀一讀。
3、用字母a、b、c表示這三個數,乘法分配律可以怎么表示呢?同學們敢接受挑戰嗎?4人小組討論,請生匯報,說一說算式的意義并讀一讀。
三、小結
同學們,今天我們通過觀察探索發現了乘法分配律,并用字母簡潔的表示出來。下面同學們敢接受考驗嗎?
四、分層練習,逐級達標
1、填一填:習題卡第一題
鞏固乘法分配律并使學生初步感受運用乘法分配律能進行一些簡便運算。
學了乘法分配律有什么用呢?習題卡中的例題你會選擇哪種方法呢?請生選擇方法,說一說理由。
2、看一看:習題卡第二題
3、應用:請生完成書P38第7題。使學生感受學習乘法分配律的用處是使計算簡便。
五、回顧課程,進行總結
同學們,今天這節課我們通過觀察、分析學習了新的知識,你有什么收獲呢?
板書設計
乘法分配律
(5+10)×24=5×24+10×24
(a+b)×c=a×c+b×c
25×(4+2)=25×4+25×2
a×(b+c)=a×b+a×c
習題卡
填一填
1、(32+25)×4=32×( )+25×( )
2、(64+12)×5=( )×5+( )×5
3、(7+6)×8=7868
4、(43+25)×2=
5、3×6+7×6=(+)
看一看
下面哪個算式是正確的?正確的畫“√”,錯誤的畫“×”
(19+28)×56=19×56+28
(7×3)×32=7×32+3×32
64×64+36×64=(64+36)×64
乘法分配律教學設計13
教學目標:
1.使學生結合具體的問題情境經歷探索乘法分配律的過程,理解并掌握乘法分配律。
2.培養學生簡單的推理能力,增強用符號表達數學規律的意識,體會用字母式子表示乘法分配律的嚴謹與簡潔。
3.使學生在數學活動中獲得成功的體驗,進一步增強學習數學的興趣和自信心。
教學過程:
一、創設情境
師(出示教材第54頁的情景圖):從圖中你能獲得哪些信息?“單價”一詞是什么意思?
師:買5件夾克衫和5條褲子,一共要付多少元?你們能列綜合算式獨立解答嗎?試試看。(教師巡視,了解學生是采用什么方法解答的,并請兩名用不同方法解答的學生上臺板演)
[設計意圖:借助學生的生活經驗,創設學生感興趣的買衣服情境,激發學生的學習積極性和主動性。同時在學生原有知識的基礎上,通過引導學生認真審題、仔細分析,自主探索解決問題的方法,自然生成了不同的解題思路和算法,為后續學習奠定了基礎。]
二、深入探索
1.交流兩種算法的實際意義。
(1)師:“(65+45)×5”誰會讀?“65+45”算的是什么?這樣的錢在實際生活中叫做――(一套)你能用圖在黑板上貼出來表示一套嗎?(指名一人上黑板貼模型圖)
師:這樣貼,能明顯地看出是一套嗎?誰能上來糾正?
師:“再乘5”是什么意思?誰上來貼出另外幾套衣服?
師:想一想,這一題為什么能這樣做呢?
師(小結):如果夾克衫和褲子的件數不同,那就不能這樣做。
[設計意圖:利用擺模型衣服,巧妙地幫助學生理解算式各部分的含義,促進了形象思維和抽象思維的互助互補,為學生初步感知乘法分配律建立了清晰的表象,有效地拓展了學生思維的廣度和深度。同時,讓學生讀算式并小結出由于兩種衣服數量相同才能采用這種方法,都是為后面概括規律做好鋪墊。]
(2)提問:“65×5+45×5”是什么意思?
2.建立等式,初步感知。
師:這兩道算式算出的都是什么?算出的結果怎樣?在數學上我們可以用什么符號來連接?〔板書:(65+45)×5=65×5+45×5)〕
師:誰能讀一讀這個等式?你們發現這個等式的兩邊有什么聯系嗎?
3.類比展開,體驗感悟。
師:你們能模仿這個等式再舉一個這樣的例子嗎?再算一算,兩邊的算式是不是相等?(指名舉例,挑選幾組等式板書)
師:剛才大家舉出了這么多類似的例子,左右兩邊的算式都是相等的,看來這里面一定有內在的規律。
師(出示算式):讀一讀這些等式,左邊的算式都有什么特點?再想一想,右邊的算式與左邊的算式有什么聯系?(小組互相討論一下)
[設計意圖:學生對乘法分配律本質的理解,需要經歷一個主動探索、體驗感悟、發現規律的過程。在教師提供素材的基礎上,讓學生自己舉出例子,追求素材的豐富性和多樣性。在模寫的過程中,學生是自己驗證自己發現的規律,使學生的主體地位得以充分體現。通過讓學生“讀一讀”,有效降低了概括的難度。學生在多次觀察、比較、討論的基礎上總結規律,水到渠成。]
4.揭示規律,理解意義。
(1)師:兩個數的和同第三個數相乘,等于這兩個加數分別同第三個數相乘,再把所得的乘積相加,這就是乘法分配律。(板書課題:乘法分配律)
(2)師:“乘法”我們大家都懂,“律”就是規律,那“分配”二字作何解釋呢?
師:括號外的數既要與第一個加數相乘,又要與第二個加數相乘,這就是“分配”。
(3)提問:如果用字母a、b、c表示這三個數,這個規律可以怎樣寫?[板書:(a+b)×c=a×c+b×c]
(4)師:這既然是一個等式,左邊的算式和右邊的算式相等,那么反過來看,右邊的算式和左邊的算式也應該怎么樣?也就是說,這個規律反過來看可以嗎?
(5)師(小結):通過剛才的研究,誰再來說一說,什么是乘法分配律?
[設計意圖:通過對“分配”二字的分析,讓學生更加深刻地理解了乘法分配律的意義,也體現了設計的精細和獨到。同時,引導學生理解乘法分配律的.可逆性,為后面的練習做好了充分的準備。]
三、鞏固內化
1.做“想想做做”第1題。
(1)讓學生獨立完成前兩題,并說說自己是怎樣想的。(第2小題要讓學生明確:在求兩積之和的算式中,有相同的乘數,這個相同的乘數可以放在括號的外面)
(2)讓學生完成后兩題,并要求說說是怎樣填、怎樣想的。
2.做“想想做做”第2題。
(1)讓學生獨立完成,并交流是怎樣想的。
(2)第3小題要提醒學生注意74×1可直接寫成74,第4小題可以讓學生再分別說說題中的兩個式子分別和怎樣的算式相等。
3.下面每組中兩道題的計算結果相同嗎?哪一題的計算比較簡單?
(1)64×8+36×8 (2)12×30+12×5
(64+36)×8 12×(30+5)
師:看來,運用乘法分配律還能進行簡便計算,這是我們下節課將要進一步研究的內容。
[設計意圖:合理地安排練習,體現了教學的扎實,并讓學生初步感知了乘法分配律對于計算的簡便,同時激發了學生對后續學習的興趣。]
四、總結提升
乘法分配律教學設計14
《乘法分配律的運用》教學設計及反思
教學目標
(一)使學生學會用乘法分配律進行簡算,提高計算能力.
(二)培養學生靈活運用乘法運算定律進行計算的習慣.
教學重點和難點
能比較熟練地應用運算定律進行簡算是教學的重點;反向應用乘法分配律是學習的難點. 教學過程設計
(一)復習準備
1.口算:
(二)學習新課
我們已經學過乘法分配律,今天繼續研究怎樣應用乘法分配律使計算簡便.(板書:乘法分配律的應用)
1.創設情境,激發學生學習積極性.
出示102×( ).
請同學任意填上一個兩位數,老師可以迅速說出它的得數,而不用筆算.
2.教學例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數乘三位數的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應用運算定律進行簡算?
經過討論后,可能出現兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進行計算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎上引導學生觀察這類題目的特點,以及怎樣應用乘法分配律,從而使學生明確:“兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據是什么.
(3)計算9×37+9×63.
啟發提問:
①這類題目的結構形式是怎樣的?有什么特點?
②根據乘法分配律,可以把原式改寫成什么形式?這樣算為什么簡便?
在學生充分討論的基礎上,師板書:
提問:這題能簡算嗎?什么地方錯了?應怎樣改?
啟發學生明確:題里兩個乘式沒有相同的因數.應該有一個相同的因數,另外兩個因數加起來應是能湊成整十、整百、整千的數.
2.根據乘法分配律把相等的式子用“=”連接起來.
討論:2,3兩題為什么不相等?要使等號兩邊式子相等、符合乘法分配律的形式,應該改哪個地方?
在討論基礎上得出:
第2題,如果左邊算式不變,右邊算式應改為35×12+45×12,使兩個加數分別與同一個數相乘;如果右邊算式不變,兩個積里有相同的因數45,把相同的.因數提到括號外面,兩個不同的因數就是兩個加數,改為(35+12)×45.
第3題右邊兩個積里相同的因數是4,不同的因數是11和25,應改為(11+25)×4.因此
要特別注意:括號里的每一個加數都要同括號外面的數相乘;反過來,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面.而三個數連乘則是可以改變運算順序,它是乘法結合律.必須要掌握這兩個運算定律的區別.
(四)作業
練習十四第5~10題.
教學反思:本節課從學生實際出發,創設了具體的生活情境,引導學生開展觀察、猜想、舉例驗證、交流等活動,從激活學生已有的知識經驗和探究欲望入手,引導學生主動參與數學的學習過程,從而發展學生數學思維數學能力,在學習過程中學會學習,學會與人交流合作。新理念還體現不夠,學生的積極性沒有充分調動起來。
乘法分配律教學設計15
【教學目標】
1、深入理解乘法分配律兩種算式意義,正確運用分配律進行簡便計算。
2、能根據算式各自的特征,選擇使用、靈活計算。
3、能根據乘法分配律適用條件,恒等變形算式,提高計算的轉化能力!
4、通過計算,培養仔細看題、留意特點、反映迅速等良好習慣!
【教學重點】
深入理解乘法分配律兩種算式意義,正確運用分配律進行簡便計算。
【教學難點】
1、能根據算式各自的特征,選擇使用、靈活計算。
2、能根據乘法分配律適用條件,恒等變形計算式,提高計算的.轉化能力!
【教學過程】
環節
教師活動
學生活動
設計意圖
一、回顧引入
1、我們昨天學了……,請寫出依據(字母表達式)
2、看著這個字母表達式,你想說點什么?
1、學生一起回答省略部分
2、學生各自在自己草稿本上寫出字母表達式
3、讓學生充分表達!
以憶引練,為接下來的練習做知識鋪墊準備!
二、開展練習
分別出示:
1、基礎題
(1)選擇題
(2)填空題
(3)用簡便方法計算
1、口答選擇題
2、筆寫填空題
3、比賽方式完成簡便計算
1、通過選擇和填空兩種題型,讓學生進一步體會乘法分配律的現實意義及其算式結構。
2、訓練準確簡便計算能力,也是鞏固新課掌握的計算方法
小結:正確使用乘法分配律,留意算式結構,小心相同因數混亂。
2、提高題(計算各題,怎樣簡便就怎么算)。
1、先標出你認為能夠簡便計算的題
2、動筆計算,并驗證自己的觀察
養學生觀察力、細心力、分析力、和計算靈活性。
小結:一看、二想、三算
3、拓展題(能快速算出下面各題嗎?)。
用作選做題:做你會計算的題
訓練學生拆數、拼湊、約感能力,滿足學習能力較強學生需要
小結:變看似不能簡便計算為能夠簡便計算
三、全課總結
1、涵蓋小結內容
2、分享個性錯誤(如寫錯數字、計算錯),避免同學犯與自己相同的錯誤。
【乘法分配律教學設計】相關文章:
《乘法分配律》教學設計07-03
乘法分配律教學設計12-22
乘法的分配律教學設計03-17
乘法分配律教學設計04-01
《乘法分配律》教學設計06-19
《乘法分配律》優秀的教學設計03-23
乘法分配律教學設計【熱門】04-04
【精】乘法分配律教學設計04-04
【熱門】乘法分配律教學設計04-06
乘法分配律教學設計【熱】04-01