高一數學教學計劃

時間:2022-11-30 13:06:41 數學教學計劃 我要投稿

高一數學教學計劃匯編15篇

  時光在流逝,從不停歇,我們的工作又進入新的階段,為了在工作中有更好的成長,此時此刻我們需要開始制定一個計劃。可是到底什么樣的計劃才是適合自己的呢?以下是小編整理的高一數學教學計劃,歡迎閱讀與收藏。

高一數學教學計劃匯編15篇

高一數學教學計劃1

  一、教材教法分析

  本節課是x教版普通高中課程標準實驗教科書數學必修(x)的第一節課。該課是在二維平面直角坐標系基礎上的推廣,是空間立體幾何的代數化。教材通過一個實際問題的分析和解決,讓學生感受建立空間直角坐標系的必要性,內容由淺入深、環環相扣,體現了知識的發生、發展的過程,能夠很好的誘導學生積極地參與到知識的探究過程中。同時,通過對《xx》的學習和掌握將對今后學習本節內容《xx》和選修內容《xx》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標系。

  二、學情分析

  一方面學生通過對空間幾何體:柱、錐、臺、球的學習,處理了空間中點、線、面的關系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學生剛剛學習了解析幾何的基礎內容:直線和圓,對建立平面直角坐標系,根據坐標利用代數的方法處理問題有了一定的認識,因此也建立了一定的轉化和數形結合的思想。這兩方面都為學習本課內容打下了基礎。

  三、教學目標

  1、知識與技能

  ①通過具體情境,使學生感受建立空間直角坐標系的必要性。

  ②了解空間直角坐標系,掌握空間點的坐標的確定方法和過程。

  ③感受類比思想在探究新知識過程中的作用。

  2、過程與方法

  ①結合具體問題引入,誘導學生探究。

  ②類比學習,循序漸進。

  3、情感態度與價值觀

  通過用類比的數學思想方法探究新知識,使學生感受新舊知識的聯系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學生體會數學的實踐性和應用性,感受數學刻畫生活的作用,不斷地拓展自己的思維空間。

  4、教學重點

  本課是本節第一節課,關鍵是空間直角坐標系的建立,對今后相關內容的學習有著直接的影響作用,所以本課教學重點確立為“空間直角坐標系的理解”。

  5、教學難點

  先通過具體問題回顧平面直角坐標系,使學生體會用坐標刻畫平面內任意點的位置的方法,進而設置具體問題情境促發利用舊知解決問題的局限性,從而尋求新知,根據已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發展得到“空間直角坐標系”的建立,再逐步掌握利用坐標表示空間任意點的位置。總得來說,關鍵是具體問題情境的設立,不斷地讓學生感受,交流,討論。

高一數學教學計劃2

  教材分析:

  解不等式是不等式學習的主要內容,是中學數學的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎,初中已經學習,二次不等式是重點,也是學習的難點。作為數學重要的工具及方法,經常運用于其它數學知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數形結合”方法,這種方法將二次函數,二次方程結合為一體,并且借助“圖形”直觀地得出答案,充分展現了數學知識之間的內在聯系,另外也展現了“數形結合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉化為一次不等式組的方法,這種方法思路自然,同時也體現了“轉化”思想,難度也不大,應該更加符合學生的實際思維及思路。

  學情分析:

  初中已經學習了一元一次不等式(或組)的解法,積累了一定的解題經驗。同時,對于二次方程,二次函數等相關知識學生均較為熟悉。然而,根據自己的調查,一少部分學生對于一元一次不等式及不等式組的解法都表現出一定程度的陌生。進而,可以先從復習簡單的一次不等式及不等式組入手加以展開教學。

  學生心理方面,學習積極性較高,對數學的學習興趣、信心也比較理想,有較強的學習動機——考上大學,盡管是外在的誘因。

  教學目標:

  ①知識與技能

  熟練掌握一元一次不等式及不等式組的解法,初步學會兩種方法求出一元二次不等式的解集

  ②過程與方法

  經歷不等式求解的探索及發現過程,體驗“數形結合及轉化”思想的魅力,掌握方法,學會學習

  ③情感、態度及價值觀

  在上述過程中,體驗成功,激發了對數學學習的興趣及信心,發展了對數學學習的積極情感,增強了學習的內在動機

  教學重點:

  一元二次不等式的解法

  教學難點:

  解法的探索及發現,關鍵在于“識圖能力”

  反思:

  今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進而缺乏必要的設計。在課堂上,就難點特別與個別差生進行了交流,并且給予了幫助及指導。在指導過程中,我找出了他們困難的二個環節:

  首先,對平面曲線上點的橫坐標與縱座標之間的對應關系表現陌生,進而對它們的取值變化情況感到費解。

  其次,是差生的思維能力尚處于“經驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標取值范圍只能是“一籌莫展”。

  在了解情況后,遵循“最近發展區”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關。由此足以說明,從知識的角度而言,“沒有教不好的學生,只有不會教的教師:這句話還是相當有道理的。當然,這一切的前提就是對學生“學情”的掌握。美國著名心理學家、結構主義學派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學科任何年齡段的任何知識。

  教學程序:

  一、復習一元一次不等式及不等式組的解法

  以題組形式設計習題

  ①2x+3>7

  ②不等式組

  ③ax>b

  二、創設二次不等式的生活背景實例,引入課題

  采用課本上的實例,有關網絡收費問題

  三、一元二次不等式的解法探索

  (1)

  在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。

  由于這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最后以課外思考題的形式設計相應習題。

  (2)

  采取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,盡管這些知識不完整,語言或許不規范,思維或許不嚴密。

  之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。

  反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。于是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。

  四、練習環節

  可以說,即使到了高三,仍然有不少同學對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬于技能課,對于技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。

  課本上,配置了不少練習題。對于練習,我采取多種方式,或叫學生上黑板板書,借助學生練習規范解題格式;或者口答,說解題思路及答案;或者下面獨立練習。

  五、課堂小結

  知識,思想、方法及感悟等

  六、課后作業

  ①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源于課本上的A組或B組

  ②課外思考題:

  1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同

  2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍

  變式一:戓將R改為空集,此時結論如何

  變式二:仿上,自己改編條件,并解之。

  反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。

高一數學教學計劃3

  一、指導思想

  準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注意參透教學思想和方法,針對學生實際,不斷研究數學教學,改進教法,指導學法。

  數學目標要求

  1、理解集合及充要條件的有關知識,掌握不等式的性質,一元二次不等式、絕對值不等的解法,掌握函數的概念及指數函數,對函數和幕函數的性質和圖象。

  2、理解角的概念的推廣和三角函數的定義,掌握基本的三角函數公式和三角函數巔峰性質、圖像,理解三角函數的周期性

  3、理解數列的概念,掌握等差數列和等比數列的性質,并會求等差數列、等比數列前n項的和。

  4、掌握平面向量時有關概念和運算,掌握直線和圓的方程的求法。

  5、掌握空間幾何直線、平面之間的位置關系及其判定方法。

  6、掌握概率與統計初步里的計數原理,理解三種抽樣方法,會求簡單問題的概率。

  二、教學建議

  1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練掌握知識和邏輯體系,細致領悟教材改革的精髓,逐步明確教材教學形式,內容和教學目標的影響。

  2、準確吧握新大綱。新大綱修改了部分內容的教學要求層次,把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上要重視數學應用;重視教學思想方法的參透。

  3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施材,以學生為賬戶提,構建新的認識體系,營造有利于學生的氛圍。

  4、發揮教材的多種教學功能。用好章頭圖,激發學生學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。

  5、加強課堂研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。發揚教學民主,師生雙方親切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。根據材料個章節的重難點制定教學專題,積累教學經驗。

  6、落實課外活動內容,組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。

  三、教學進度

  高一上學期

  高一下學期

  周次內容

  周次內容

  1-4復習初中知識和集合1-3數列

  5充要條件

  4-6平面向量

  6-7不等式7-9直線的方程

  8-10

  函數10期中考試

  11

  期中考試11-12圓的方程

  12-14指數函數與對數函數13-15

  立體幾何

  15-18三角函數16-18概率與統計初步

  19-20期末、總復習、考試19-20

  總復習與期末考試

  總結:制定教學計劃的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學。

高一數學教學計劃4

  一、教學目標。

  (一)情意目標

  (1)通過分析問題的方法的教學,培養學生的學習的興趣。

  (2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。

  (3)在探究函數、等差數列、等比數列的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識

  (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

  (5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。

  (6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。

  (二)能力要求

  1、培養學生記憶能力。

  (1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。

  (3)通過揭示立體集合、函數、數列有關概念、公式和圖形的對應關系,培養記憶能力。

  2、培養學生的運算能力。

  (1)通過概率的訓練,培養學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。

  (3)通過函數、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數形結合,另辟蹊徑,提高學生運算能力。

  3、培養學生的思維能力。

  (1)通過對簡易邏輯的教學,培養學生思維的周密性及思維的邏輯性。

  (2)通過不等式、函數的一題多解、多題一解,培養思維的靈活性和敏捷性,發展發散思維能力。

  (3)通過不等式、函數的引伸、推廣,培養學生的創造性思維。

  (4)加強知識的橫向聯系,培養學生的數形結合的能力。

  (5)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。

  (三)知識目標

  1、集合、簡易邏輯

  (1)理解集合、子集、補訂、交集、交集的概念。了解空集和全集的意義。了解屬于、包含、相等關系的意義。掌握有關的術語和符號,并會用它們正確表示一些簡單的集合。

  (2)理解邏輯聯結詞"或"、"且"、"非"的含義。理解四種命題及其相互關系。掌握充分條件、必要條件及充要條件的意義。

  (3)掌握一元二次不等式、絕對值不等式的解法。

  2、函數

  (1)了解映射的概念,理解函數的概念。

  (2)了解函數的單調性、奇偶性的概念,掌握判斷一些簡單函數的單調性、奇偶性的方法。

  (3)了解反函數的概念及互為反函數的函數圖像間的關系,會求一些簡單函數的反函數。

  (4)理解分數指數冪的概念,掌握有理指數冪的運算性質。掌握指數函數的概念、圖像和性質。

  (5)理解對數的概念,掌握對數的運算性質。掌握對數函數的概念、圖像和性質。

  (6)能夠運用函數的性質、指數函數和對數函數的性質解決某些簡單的實際問題。

  3、數列

  (1)理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。

  (2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,并能解決簡單的實際問題。

  (3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,并能解決簡單的實際問題。

  二、教學重點

  1、集合、子集、補集、交集、并集。一元二次不等式的解法四種命題。充分條件和必要條件。

  2、映射、函數、函數的單調性、反函數、指數函數、對數函數、函數的應用。

  3、等差數列及其通項公式。等差數列前n項和公式。

  等比數列及其通項公式。等比數列前n項和公式。

  三、教學難點

  1、四種命題。充分條件和必要條件

  2、反函數、指數函數、對數函數

  3、等差、等比數列的性質

  四、工作措施。

  1、抓好課堂教學,提高教學效益。

  課堂教學是教學的主要環節,因此,抓好課堂教學是教學之根本,是大面積提高數學成績的主途徑。

  (1)、扎實落實集體備課,通過集體討論,抓住教學內容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。

  (2)、加大課堂教改力度,培養學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養學生自主探究的精神,通過“知識的產生,發展”,逐步形成知識體系;通過“知識質疑、展活”遷移知識、應用知識,提高能力。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,并大面積提高數學成績。

高一數學教學計劃5

  一、學情分析

  我校選用的數學教材是由人民教育出版社、課程教材研究所、中學數學課程教材研究開發中心編著的A版教材。與舊教材作一比較,發現本套教材是在繼承我國高中數學教科書編寫優良傳統和基礎上進取創新,充分體現了數學的美學價值和人文精神。我校是一所普通的高中,在重點高中和私立學校擴招的影響下,我校新生的素質可想而知了。學生基礎差,學習興趣不大,怎樣調動學生的學習興趣是本期在教學中要解決的重要問題。

  二、教材分析

  本教材有下列幾個特點:

  1、更加注重強調數學知識的實際背景和應用,使教材具有很強的“親和力”,即以生動活潑的呈現方式,激發學生的興趣和美感,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,使學生興趣盎然地投入學習。

  2、以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神,體現了問題性,本套教材的一個很大特點是每一章都能夠看到“觀察”“思考”“探索”以及用“問號性”圖標呈現的“邊空”等欄目,利用這些欄目,在知識形過過程的“關鍵點”上,在運用數學思想方法產生解決問題策略的“關節點”上,在數學知識之間聯系的“聯結點”上,在數學問題變式的“發散點”上,在學生思維的“最近發展區”內,提出恰當的、對學生數學思維有適度啟發的問題,以引導學生的數學探究活動,切實轉變學生的學習方式。

  3、信息技術是一種強有力的認識工具,在教材的編寫過程體現了進取探索數學課程與信息技術的整合,幫忙學生利用信息技術的力量,對數學的本質作進一步的理解。

  4、關注學生數學發展的不一樣需求,為不一樣學生供給不一樣的發展空間,促進學生個性和潛能的發展供給了很好的平臺。例如教材經過設置“觀察與猜想”、“閱讀與思考”、“探究與發現”等欄目,一方面為學生供給了一些關于探究性、拓展性、思想性、時代性和應用性的選學材料,拓展學生的數學活動空間和擴大學生的數學知識面,另一方面也體現了數學的科學價值,反映了數學在推動其他科學和整個文化提高中的作用。

  5、新教材注重數學史滲透,異常是注重介紹我國對數學的貢獻,充分體現數學的人文價值,科學價值和文化價值,激發了學生的愛國主義情感和民族自豪感。

  三、教學任務與目的

  1、了解集合的含義與表示,理解集合間的關系和運算,感受集合語言的意義和作用。進一步體會函數是描述變量之間的依靠關系的重要數學模型,會用集合與對應的語言描述函數,體會對應關系在刻畫函數概念中的作用。了解函數的構成要素,會求簡單函數定義域和值域,會根據實際情境的不一樣需要選擇恰當的方法表示函數。

  經過已學過的具體函數,理解函數的單調性、最大(小)值及其幾何意義,了解奇偶性的含義,會用函數圖象理解和研究函數的性質。根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關資料,了解函數概念的發展歷程。

  2、了解指數函數模型的實際背景。理解有理指數冪的含義,經過具體實例了解實數指數冪的意義,掌握冪的運算。理解指數函數的概念和意義,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型。

  理解對數的概念及其運算性質,明白用換底公式能將一般對數轉化成自然對數或常用對數;經過閱讀材料,了解對數的發現歷史以及對簡化運算的作用。經過具體實例,直觀了解對數函數模型所刻畫的.數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點。明白指數函數y=ax與對數函數y=logax互為反函數(a》0,a≠1)。經過實例,了解冪函數的概念;結合函數y=x,y=x2,y=x3,y=1x,y=x12的圖象,了解它們的變化情景。

  3、結合二次函數的圖象,確定一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系、根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法、利用計算工具,比較指數函數、對數函數以及冪函數間的增長差異;結合實例體會直線上升、指數爆炸、對數增長等不一樣函數類型增長的含義、收集一些社會生活中普遍使用的函數模型,了解函數模型的廣泛應用。

  4、利用實物模型、計算機軟件觀察很多空間圖形,認識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些特征描述現實生活中簡單物體的結構。能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)制作模型,會用斜二側法畫出它們的直觀圖。

  經過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不一樣表示形式。完成實習作業,如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎上,尺寸、線條等不作嚴格要求)。了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。

  5以長方體為載體,使學生在直觀感知的基礎上,認識空間中點、直線、平面之間的位置關系。經過對很多圖形的觀察、實驗、操作和說理,使學生進一步了解平行、垂直判定方法以及基本性質。學會準確地使用數學語言表述幾何對象的位置關系,體驗公理化思想,培養邏輯思維本事,并用來解決一些簡單的推理論證及應用問題、

  6、在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。能根據斜率判定兩條直線平行或垂直。

  根據確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。能用解方程組的方法求兩直線的交點坐標。探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。

  四、教學措施和活動

  1、加強團體備課與個人學習,個人要加強自我學習和養成解數學題的習慣,提高個人專業素養和教學基本功。

  2、注重培養學生自主學習的本事,轉變學生學習數學的方式。學生是學習和發展的主人,教學中要體現學生的主體地位,增強學生的自我學習,自我教育與發展的意識和本事。改善學生的學習方式是高中數學新課程追求的基本理念。

  3、了解新課程教學基本程序,掌握新課程教學常規策略,立足于提高課堂教學效率。

  4、與學生多溝通、多交流,真正成為學生的良師益友。

  5、要深刻理解領悟新教材的立意進行教學,而不要盲目地加深難度。

高一數學教學計劃6

  一、指導思想:

  使學生學好從事社會主義現代化建設和進一步學習現代科學技術所必需的數學基礎知識和基本技能,培養學生的運算能力、邏輯思維能力和空間想象能力,以逐步形成運用數學知識來分析和解決實際問題的能力。要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性,培養學生的科學態度和辨證唯物主義的觀點。

  二、基本情況分析:

  1、4班共xx人,男生xx人,女生xx人;本班相對而言,數學尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。

  5班共xx人,男生xx人,女生xx人;本班相對而言,數學尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。

  2、4班在初中升入高中的升學考試中,數學成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。

  5班在初中升入高中的升學考試中,數學成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。

  3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結果是:

  三、教材分析:

  1、教材內容:集合、一元二次不等式、簡易邏輯、映射與函數、指數函數和對數函數、數列、等差數列、等比數列。

  2、集合概念及其基本理論,是近代數學最基本的內容之一;函數是中學數學中最重要的基本概念之一;數列有著廣泛的應用,是進一步學習高等數學的基礎。

  3、教材重點:幾種函數的圖像與性質、不等式的解法、數列的概念、等差數列與等比數列的通項公式、前n項和的公式。

  4、教材難點:關于集合的各個基本概念的涵義及其相互之間的區別和聯系、映射的概念以及用映射來刻畫函數概念、反函數、一些代數命題的證明、

  5、教材關鍵:理解概念,熟練、牢固掌握函數的圖像與性質。

  6、采用了由淺入深、減緩坡度、分散難點,逐步展開教材內容的做法,符合從有限到無限的認識規律,體現了從量變到質變和對立統一的辯證規律。每階段的內容相對獨立,方法比較單一,有助于掌握每一階段內容。

  7、各部分知識之間的聯系較強,每一階段的知識都是以前一階段為基礎,同時為下階段的學習作準備。

  8、全期教材重要的內容是:集合運算、不等式解法、函數的奇偶性與單調性、等差與等比數列的通項和前n項和。

  四、教學要求:

  1、理解集合、子集、交集、并集、補集的概念。了解空集和全集的意義,了解屬于、包含、相等關系的意義,能掌握有關的術語和符號,能正確地表示一些簡單的集合。

  2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。

  3、了解命題的概念、邏輯聯結詞的含義,掌握四種命題及其關系,掌握充分、必要、充要條件,初步掌握反證法。

  4、了解映射的概念,在此基礎上理解函數及其有關的概念,掌握互為反函數的函數圖象間的關系。

  5、理解函數的單調性和奇偶性的概念,并能判斷一些簡單函數的單調性和奇偶性,能利用函數的奇偶性與圖象的對稱性的關系描繪圖象。

  6、掌握指數函數、對數函數的概念及其圖象和性質,并會解簡單的函數應用問題。

  7、使學生理解數列的有關概念,掌握等差數列與等比數列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。

  五、教學措施:

  1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

  2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

  3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。

  4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

  5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。

高一數學教學計劃7

  教材教法分析

  本節課是蘇教版普通高中課程標準實驗教科書數學必修(2)第2章第三節的第一節課.該課是在二維平面直角坐標系基礎上的推廣,是空間立體幾何的代數化.教材通過一個實際問題的分析和解決,讓學生感受建立空間直角坐標系的必要性,內容由淺入深、環環相扣,體現了知識的發生、發展的過程,能夠很好的誘導學生積極地參與到知識的探究過程中.同時,通過對《空間直角坐標系》的學習和掌握將對今后學習本節內容《空間兩點間的距離》和選修2-1內容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標系.

  學情分析

  一方面學生通過對空間幾何體:柱、錐、臺、球的學習,處理了空間中點、線、面的關系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學生剛剛學習了解析幾何的基礎內容:直線和圓,對建立平面直角坐標系,根據坐標利用代數的方法處理問題有了一定的認識,因此也建立了一定的轉化和數形結合的思想.這兩方面都為學習本課內容打下了基礎.

  教學目標

  1.知識與技能

  ①通過具體情境,使學生感受建立空間直角坐標系的必要性

  ②了解空間直角坐標系,掌握空間點的坐標的確定方法和過程

  ③感受類比思想在探究新知識過程中的作用

  2.過程與方法

  ①結合具體問題引入,誘導學生探究

  ②類比學習,循序漸進

  3.情感態度與價值觀

  通過用類比的數學思想方法探究新知識,使學生感受新舊知識的聯系和研究事物從低維到高維的一般方法.通過實際問題的引入和解決,讓學生體會數學的實踐性和應用性,感受數學刻畫生活的作用,不斷地拓展自己的思維空間.

  教學重點

  本課是本節第一節課,關鍵是空間直角坐標系的建立,對今后相關內容的學習有著直接的影響作用,所以本課教學重點確立為空間直角坐標系的理解.

  教學難點

  通過建立恰當的空間直角坐標系,確定空間點的坐標。

  先通過具體問題回顧平面直角坐標系,使學生體會用坐標刻畫平面內任意點的位置的方法,進而設置具體問題情境促發利用舊知解決問題的局限性,從而尋求新知,根據已有一定空間思維,所以能較容易得出第三根軸的建立,進而感受逐步發展得到空間直角坐標系的建立,再逐步掌握利用坐標表示空間任意點的位置.總得來說,關鍵是具體問題情境的設立,不斷地讓學生感受,交流,討論.

高一數學教學計劃8

  教學目標 :

  (1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義,

  (3)掌握有關的符號及表示方法,會用它們正確表示一些簡單的集合,培養學生的符號表示的能力;

  (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

  (5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養學生的數學結合的數學思想;

  (6)培養學生用集合的觀點分析問題、解決問題的能力.

  教學重點:子集、補集的概念

  教學難點 :弄清元素與子集、屬于與包含之間的區別

  教學用具:幻燈機

  教學過程 設計

  (一)導入 新課

  上節課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識.

  【提出問題】(投影打出)

  已知 , , ,問:

  1.哪些集合表示方法是列舉法.

  2.哪些集合表示方法是描述法.

  3.將集M、集從集P用圖示法表示.

  4.分別說出各集合中的元素.

  5.將每個集合中的元素與該集合的關系用符號表示出來.將集N中元素3與集M的關系用符號表示出來.

  6.集M中元素與集N有何關系.集M中元素與集P有何關系.

  【找學生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(筆練結合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5. , , , , , , , (筆練結合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節將研究有關兩個集合間關系的問題.

  (二)新授知識

  1.子集

  (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作: 讀作:A包含于B或B包含A

  當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.

  性質:① (任何一個集合是它本身的子集)

  ② (空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

  (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例: ,可見,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B.

  【提問】

  (1) 寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。

  (2) 判斷下列寫法是否正確

  ① A ② A ③ ④A A

  性質:

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

  (2)如果 , ,則 .

  例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】(1)子集與真子集符號的方向。

  (2)易混符號

  ①“ ”與“ ”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如 R,{1} {1,2,3}

  ②{0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

  如: {0}。不能寫成 ={0}, ∈{0}

  例2 見教材P8(解略)

  例3 判斷下列說法是否正確,如果不正確,請加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 與 不能同時成立.

  解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確.空集是任何非空集合的真子集;

  (3)不正確. 與 表示同一集合;

  (4)不正確. 的所有子集是 ;

  (5)正確

  (6)不正確.當 時, 與 能同時成立.

  例4 用適當的符號( , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)設 , , ,則A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇數組成的集合,∴A=B=C.

  【練習】教材P9

  用適當的符號( , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提問:見教材P9例子

  (二) 全集與補集

  1.補集:一般地,設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即

  .

  A在S中的補集 可用右圖中陰影部分表示.

  性質: S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

  (2)若A={0},則 NA=N*;

  (3) RQ是無理數集。

  2.全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.

  注: 是對于給定的全集 而言的,當全集不同時,補集也會不同.

  例如:若 ,當 時, ;當 時,則 .

  例5 設全集 , , ,判斷 與 之間的關系.

高一數學教學計劃9

日期





周次





學時





內容





重點、難點





9.1-9.7





1





5





集合的含義與表示、





集合間的基本關系、





集合的基本運算





會求兩個簡單集合的并集與交集;會求給定子集的補集;能使用Venn圖表達集合的關系及運算。難點:理解概念





9.8-9.14





2





5





函數的概念、





函數的表示法





會求一些簡單函數的定義域和值域;能簡單應用





9.15-9.21





3





5





函數的基本性質、





學會運用函數圖象理解和研究函數的性質,理解函數單調性、最大(小)值及幾何意義





9.22-9.28





4





3





本章復習、測試






9.29-10.5





5






國慶放假






10.6-10.12





6





5





指數與指數冪的運算、





指數函數及其性質





掌握冪的運算;探索并理解指數函數的單調性與特殊點。難點:理解概念





10.13-10.19





7





5





對數與對數運算、





對數函數及其性質





理解對數的概念及其運算性質,知道用換底公式;探索并了解對數函數單調性與特殊點;知道指數函數與對數函數互為反函數





10.20-10.26





8





5





冪函數,復習、測試





從五個具體的冪函數(y=x,y=x2,y=x3,y=x-1,y=x1/2)圖象中認識冪函數的一些性質





10.27-11.2





9





5





方程的根與函數零點,





二分法求方程近似解,





幾類不同增長的模型、函數模型應用舉例





能夠借助計算器用二分法求相應方程的近似解;





對比指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義





日期





周次





學時





內容





重點、難點





11.3-11.9





10






期中復習及考試






11.10-11.16





11





5





講評試卷





分析知識點的掌握情況





11.17-11.23





12





5





任意角和弧度制,





任意角的三角函數





了解任意角的概念和弧度制,能進行弧度與度的互化,借助單位圓理解任意角三角函數的定義。





11.24-11.30





13





5





三角函數的誘導公式,





三角函數的圖象與性質





借助單位圓中的三角函數推導出誘導公式,能畫出








的圖象,理解三角函數的周期性、單調性、最值等性質

12.1-12.7





14





5





函數








的圖象,

三角函數模型的簡單應用





了解函數








的實際意義,能借助計算器畫出函數




的圖象,并觀察參數對圖象的影響。會用三角函數解決一些簡單實際問題。

12.8-12.14





15





5





復習、測試





平面向量的實際背景及基本概念





通過力的分析,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示





12.15-12.21





16





5





平面向量的線性運算,





平面向量的基本定理及坐標表示





掌握向量加、減法的運算,數乘運算,并理解其幾何意義以及兩個向量共線的含義。了解向量的基本定理、運算性質及其幾何意義。掌握平面向量的正交分解及其坐標表示





12.22-12.28





17





5





平面向量的數量積





平面向量的應用舉例





本章復習、測試





理解向量數量積的含義及其物理意義,會進行數量積的運算,會用數量積判斷兩個平面向量的垂直關系。用向量解決某些簡單的幾何問題。





12.29-1.4





18





5





兩角和與差的正弦、余弦和正切公式





用向量的數量積推導出兩角差的余弦公式,并能用兩角差的余弦公式導出兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式





1.5-1.11





19





5





簡單的三角恒等變換,期末復習





能運用上述公式進行簡單的恒等變換。進行知識的梳理。





1.12-1.18





20






復習及期未考試






高一數學教學計劃10

  一、學生在數學學習上存在的主要問題

  我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:

  1、進一步學習條件不具備。高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。

  2、被動學習。許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

  3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。

  4、不能計劃學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。

  5、不重視基礎。一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。

  此外,還有許多學生數學學習興趣不濃厚,不具備應用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重制約著學生數學成績的提高。

  二、教學策略思考與實踐

  針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹“因人施教,因材施教”原則。以學法指導為突破口;著重在“讀、講、練、輔、作業”等方面下功夫,取得一定效果。

  加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

  制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。

  課前自學是學生上好新課,取得較好學習效果的基礎。課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。

  上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。“學然后知不足”,課前自學過的同學上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

  及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由“懂”到“會”。

  獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”。

  解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,并要經常把易錯的地方拿出來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。

  系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系。以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由“活”到“悟”。

  課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知欲與學習熱情。

  1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概念,是不加定義的。它從常見的“我校高一年級學生”、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數”等事物中抽象出來,但集合的概念又不同于特殊具體的實物集合,集合的確定及性質特征是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。

  再如象限角的概念,要向學生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數列的前n項和Sn。有q≠1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規范。如在解對數函數題時,要注意“真數大于0”的隱含條件;解有關二次函數題時要注意二次項系數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學生議論數列與數集的聯系與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元素是沒有順序的;同一個數可以在數列中重復出現,而數集中的元素是沒有重復的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生歸類、總結,盡可能把相關知識表格化。如一元二次不等式的解情況列表,三角函數的圖象與性質列表等,便于學生記憶掌握。

  2、講。外國有一位教育家曾經說過:教師的作用在于將“冰冷”的知識加溫后傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由于學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。

  每堂新授課中,在復習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生已經掌握五套誘導公式,可以將求任意角三角函數值問題轉化為求某一個銳角三角函數值的問題。此時教師應進一步引導學生:對于一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到復雜的過程,要讓學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。

  例如,講解函數的圖象應從振幅、周期、相位依次各自進行變化,然后再綜合,并盡可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相應的內容,比較聯系。讓學生更清楚等差數列和等比數列是兩個對偶概念。

  3、練。數學是以問題為中心。學生怎么應用所學知識和方法去分析問題和解決問題,必須進行練習。首先練習要重視基礎知識和基本技能,切忌過早地進行“高、深、難”練習。鑒于目前我校高一的生源現狀,基礎訓練是很有必要的。課本的例題、練習題和習題要求學生要題題過關;補充的練習,應先是課本中練習及習題的簡單改造題,這有利于學生鞏固基礎知識和基本技能。讓學生通過認真思考可以完成。即讓學生“跳一跳可以摸得著”。一定要讓學生在練習中強化知識、應用方法,在練習中分步達到教學目標要求并獲得再練習的興趣和信心。例如根據數列前幾項求通項公式練習,在新教材高一(上)P111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數列復習參考題第12題;就是一個改造性很強的數學題,教師可以在上面做很多文章。其次要講練結合。學生要練習,老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發生過程,在課堂造就民主氣氛,充分傾聽學生意見,哪怕走點“彎路”,吃點“苦頭”;另一方面,則引導學生各抒己見,評判各方面之優劣,最后選出大家公認的最佳方法。還可適當讓學生涉及一些一題多解的題目,拓展思維空間,培養學生思維的多面性和深刻性。

  例如,高一(下)P26例5求證。可以從一邊證到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標系中作出它們的圖像。求兩圖在x軸上方的交點的橫坐標為2,最終得解。要求學生掌握通解通法同時,也要講究特殊解法。最后練習要增強應用性。例如用函數、不等式、數列、三角、向量等相關知識解實際應用題。引導學生學會建立數學模型,并應用所學知識,研究此數學模型。

  4、作業。鑒于學生現有的知識、能力水平差異較大,為了使每一位學生都能在自己的“最近發展區”更好地學習數學,得到最好的發展,制定“分層次作業”。即將作業難度和作業量由易到難分成A、B、C三檔,由學生根據自身學習情況自主選擇,然后在充分尊重學生意見的基礎上再進行協調。以后的時間里,根據學生實際學習情況,隨時進行調整。

  5、輔導。輔導指兩方面,培優和補差。對于數學尖子生,主要培養其自學能力、獨立鉆研精神和集體協作能力。具體做法:成立由三至六名學生組成的討論組,教師負責為他們介紹高考、競賽參考書,并定期提供學習資料和咨詢、指導。下面著重談談補差工作。輔導要鼓勵學生多提出問題,對于不能提高的同學要從平時作業及練習考試中發現問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導,切忌冷飯重抄和無目標性。要及時檢查輔導效果,做到學生人人知道自己存在問題(越具體越好),老師對輔導學生情況要了如指掌。對學有困難的同學,要耐心細致輔導,還要注意鼓勵學生戰勝自己,提高自已的分析和解決問題的能力。

高一數學教學計劃11

  (一)教學目標

  1.知識與技能

  (1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.

  (2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。

  (3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。

  2.過程與方法

  通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內涵,增強學生發現問題,研究問題的創新意識和能力.

  3.情感、態度與價值觀

  通過集合的并集與交集運算法則的發現、完善,增強學生運用數學知識和數學思想認識客觀事物,發現客觀規律的興趣與能力,從而體會數學的應用價值.

  (二)教學重點與難點

  重點:交集、并集運算的含義,識記與運用.

  難點:弄清交集、并集的含義,認識符號之間的區別與聯系

  (三)教學方法

  在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合.

  (四)教學過程

  教學環節 教學內容 師生互動 設計意圖

  提出問題引入新知 思考:觀察下列各組集合,聯想實數加法運算,探究集合能否進行類似“加法”運算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理數},

  B = {x | x是無理數},

  C = {x | x是實數}.

  師:兩數存在大小關系,兩集合存在包含、相等關系;實數能進行加減運算,探究集合是否有相應運算.

  生:集合A與B的元素合并構成C.

  師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,

  導入新知

  形成

  概念

  思考:并集運算.

  集合C是由所有屬于集合A或屬于集合B的元素組成的,稱C為A和B的并集.

  定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

  師:請同學們將上述兩組實例的共同規律用數學語言表達出來.

  學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

  應用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 設集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  師:求并集時,兩集合的相同元素如何在并集中表示.

  生:遵循集合元素的互異性.

  師:涉及不等式型集合問題.

  注意利用數軸,運用數形結合思想求解.

  生:在數軸上畫出兩集合,然后合并所有區間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.

  固化概念

  提升能力

  探究性質 ①A∪A = A, ②A∪ = A,

  ③A∪B = B∪A,

  ④ ∪B, ∪B.

  老師要求學生對性質進行合理解釋. 培養學生數學思維能力.

  形成概念 自學提要:

  ①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?

  ②交集運算具有的運算性質呢?

  交集的定義.

  由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn圖表示

  老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 并總結交集的性質.

  生:①A∩A = A;

  ②A∩ = ;

  ③A∩B = B∩A;

  ④A∩ ,A∩ .

  師:適當闡述上述性質.

  自學輔導,合作交流,探究交集運算. 培養學生的自學能力,為終身發展培養基本素質.

  應用舉例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新華中學開運動會,設

  A = {x | x是新華中學高一年級參加百米賽跑的同學},

  B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.

  例2 設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系. 學生上臺板演,老師點評、總結.

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.

  例2 解:平面內直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.

  (1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};

  (2)直線l1,l2平行可表示為

  L1∩L2 = ;

  (3)直線l1,l2重合可表示為

  L1∩L2 = L1 = L2. 提升學生的動手實踐能力.

  歸納總結 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性質:①A∩A = A,A∪A = A,

  ②A∩ = ,A∪ = A,

  ③A∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結

  老師點評、闡述 歸納知識、構建知識網絡

  課后作業 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華

  備選例題

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  當a = –3時,A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范圍;

  (2)若A∪B = {x | x<1},求a的取值范圍.

  【解析】(1)如下圖所示:A = {x | –1

  ∴數軸上點x = a在x = – 1左側.

  ∴a≤–1.

  (2)如右圖所示:A = {x | –1

  ∴數軸上點x = a在x = –1和x = 1之間.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數時,A∩B 與A∩C = 同時成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  當a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設A∩C = 相矛盾,故不適合.

  當a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數a = –2.

  例4 設集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  當x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

  當x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

  當x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

  綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一數學教學計劃12

  一、教材依據

  本節課是北師大版數學(必修2)第二章《解析幾何初步》第一節《1.2直線的方程》第一部分《直線方程的點斜式》內容。

  二、教材分析

  直線方程的點斜式給出了根據已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式

  、兩點式都是由點斜式推出的。從初中代數中的一次函數引入,自然過渡到本節課想要解決的問題求直線方程問題。在引入,過程中要讓學生弄清

  直線與方程的一一對應關系,理解研究直線可以從研究方程和方程的特征入手。

  在推導直線方程的點斜式時,根據直線這一結論,先猜想確定一條直線的條件,再根據猜想得到的條件求出直線方程。

  三、教學目標

  知識與技能:

  (1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;

  (2)能正確利用直線的點斜式、斜截式公式求直線方程。

  (3)體會直線的斜截式方程與一次函數的關系。

  過程與方法:在已知直角坐標系內確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎上,通過師生探討,得出直線的點斜式方程;學生

  通過對比理解截距與距離的區別。

  情態與價值觀:通過讓學生體會直線的斜截式方程與一次函數的關系,進一步培養學生數形結合的思想,滲透數學中普遍存在相互聯系、相互轉化

  等觀點,使學生能用聯系的觀點看問題。

  四、教學重點

  重點:直線的點斜式方程和斜截式方程。

  五、教學難點

  難點:直線的點斜式方程和斜截式方程的應用。

  要點:運用數形結合的思想方法,幫助學生分析描述幾何圖形。

  六、教學準備

  1.教學方法的選擇:啟發、引導、討論.

  創設問題情境,采用啟發誘導式的教學模式引導學生探索討論,學生主動參與提出問題、探索問題和解決問題的過程,突出以學生為主體的探究性

  學習活動。

  2.通過讓學生觀察、討論、辨析、畫圖,親身實踐,調動多感官去體驗數學建模的思想;學生要學會用數形結合的方法建立起代數問題與幾何問題

  間的密切聯系。為使學生積極參與課堂學習,我主要指導了以下的學習方法:

  ①.讓學生自己發現問題,自己通過觀察圖像歸納總結,自己評析解題對錯,從而提高學生的參與意識和數學表達能力。

  ②.分組討論。

高一數學教學計劃13

  一、學生狀況分析

  學生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學生的學習進取性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。

  二、教材分析

  使用北師大版《普通高中課程標準實驗教科書·數學》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可理解性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。必修1有三章(集合與函數概念;基本初等函數;函數的應用);必修2有四章(空間幾何體;點線平面間的位置關系;直線與方程;圓與方程)。

  三、教學任務

  本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。

  四、教學質量目標

  1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。

  2、提高空間想象、抽象概括、推理論證、運算求解、數據處理等基本本事。

  3、提高學生提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。

  4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。

  5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不舍的鉆研精神和科學態度。

  6、具有必須的數學視野,逐步認識數學的科學價值、應用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進目標達成的重點工作

  認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要資料,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學本事都得到提高和發展。

  教學方法及推進措施

  六、相關措施:

  高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在于它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際本事出發,研究學生的心理特征,做好初三與高一的銜接工作,幫忙學生解決好從初中到高中學習方法的過渡。從高一齊就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:

  (1)注意研究學生,做好初、高中學習方法的銜接工作。

  (2)集中精力打好基礎,分項突破難點。所列基礎知識依據課程標準設計,著眼于基礎知識與重點資料,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。

  (3)培養學生解答考題的本事,經過例題,從形式和資料兩方應對所學知識進行本事方面的分析,引導學生了解數學需要哪些本事要求。

  (4)讓學生經過單元考試,檢測自我的實際應用本事,從而及時總結經驗,找出不足,做好充分的準備

  (5)抓好尖子生與后進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。

  (6)重視數學應用意識及應用本事的培養。

  (7)重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。

  (8)合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用比較的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

  (9)加強培養學生的邏輯思維本事和解決實際問題的本事,以及培養提高學生的自學本事,養成善于分析問題的習慣,進行辨證唯物主義教育。

  (10)抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。

  (11)自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創新教學方法,把學生被動理解知識轉化主動學習知識。

  七、教學進度安排:

  (略)

高一數學教學計劃14

  一、教學內容

  本學期將完成“《數學①》必修”和“《數學④》必修” (人民教育出版社教A版)的學習,教學輔助材料有《三維設計》和自愿訂閱學習方法報部分單元練習及學法指導閱讀材料。二、教學目標與要求

  (一)前半期完成《數學①》主要涉及三章內容:

  第一章集合與函數的概念(約13學時)

  通過本章學習,使學生感受到用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數學對象,為以后的學習奠定基礎。

  1.了解集合的含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;

  2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;

  3.理解補集的含義,會求在給定集合中某個集合的補集;

  4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;

  5.滲透數形結合、分類討論等數學思想方法;

  6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數學知識的過程中,培養學生的思維能力。

  第二章函數的概念與基本初等函數Ⅰ(約14學時)

  教學本章時應立足于現實生活從具體問題入手,以問題為背景,按照“問題情境—數學活動—意義建構—數學理論—數學應用—回顧反思”的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數是探索自然現象、社會現象基本規律的工具和語言,學會用函數的思想、變化的觀點分析和解決問題,達到培養學生的創新思維的目的。

  1.了解函數概念產生的背景,學習和掌握函數的概念和性質,能借助函數的知識表述、刻畫事物的變化規律;

  2.理解有理指數冪的意義,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質;理解對數的概念,掌握對數的運算性質,掌握對數函數的概念、圖象和性質;了解冪函數的概念和性質,知道指數函數、對數函數、冪函數時描述客觀世界變化規律的重要數學模型;

  3.了解函數與方程之間的關系;會用二分法求簡單方程的近似解;了解函數模型及其意義;

  4.培養學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創新意識與探究能力、數學建模能力以及數學交流的能力。

  第三章函數的應用(約9學時)

  結合實際問題,感受運用函數概念建立模型的過程和方法,體會函數在數學和其他學科中的重要性,初步運用函數思想理解和處理現實生活和社會中的簡單問題。學生還將學習利用函數的性質求方程的近似解,體會函數與方程的有機聯系。

  1、結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。

  2、根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。

  3、利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。

  4、收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。

  (二)后半期完成《數學④》主要涉及三章內容:

  第一章三角函數(約16學時)

  通過本章學習,有助于學生認識三角函數與實際生活的緊密聯系,以及三角函數在解決實際問題中的廣泛應用,從中感受數學的價值,學會用數學的思維方式觀察、分析現實世界、解決日常生活和其他學科學習中的問題,發展數學應用意識。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函數的定義,理解同角三角函數的基本關系及誘導公式;

  3.了解三角函數的周期性;

  4.掌握三角函數的圖像與性質。

  第二章平面向量(約12學時)

  在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數學和物理中的一些問題,發展運算能力和解決實際問題的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、減法和向量數乘的運算;

  3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;

  4.理解平面向量數量積的含義,會用平面向量的數量積解決有關角度和垂直的問題。

  第三章三角恒等變換(約8學時)

  通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經歷和參與數學發現活動的基礎上,體會向量與三角函數的聯系、向量與三角恒等變換公式的聯系,理解并掌握三角變換的基本方法。

  1.掌握兩角和與差的余弦、正弦、正切公式;

  2.掌握二倍角的正弦、余弦、正切公式;

  3.能正確運用三角公式進行簡單的三角函數式的化簡、求值和恒等式證明。

  三、教學常規要求及建議(要點)

  根據學校對教師的常規要求,結合本備課組實際,擬提出以下幾點建議,望老師們自覺執行,落實教學各個環節,不拉同行的后腿,力求各班級之間平均分的差距達到學校要求。

  1、做好傳、幫、帶工作,達到學校教務處要求。本組新分1青年教師,中二1人、中一教師2人,高級教師4人,在學校要求參加集體聽課、交流的教研活動之外,組內教師之間不定時地聽隨堂課并交流不少于聽課總數的半。

  2、集體參加組內專題備課2—3次,每次中心發言人應有發言材料準備,其他教師補充發言記錄。

  3、教師每周全收、批學生作業次數不低于上課總節數的五分之三(正常上課沒周收改作業至少3次。

  3、每節課應有教學目標、重點,突出解決的問題和方法、過程。

  4、做好教學反思(每周至少有一次)

高一數學教學計劃15

  教學計劃可以幫助教師理清教學思路,提高課堂效率。

  ●教學目標

  (一)教學知識點

  1.了解全集的意義.

  2.理解補集的概念.

  (二)能力訓練要求

  1.通過概念教學,提高學生邏輯思維能力.

  2.通過教學,提高學生分析、解決問題能力.

  (三)德育滲透目標 滲透相對的觀點.

  ●教學重點 補集的概念.

  ●教學難點

  補集的有關運算.

  ●教學方法 發現式教學法 通過引入實例,進而對實例的分析,發現尋找其一般結果,歸納其普遍規律.

  ●教具準備

  第一張:(記作1.2.2 A)

  ●教學過程 Ⅰ.復習回顧

  1.集合的子集、真子集如何尋求?其個數分別是多少? 2.兩個集合相等應滿足的條件是什么?

  Ⅱ.講授新課 [師]事物都是相對的,集合中的部分元素與集合之間關系就是部分與整體的關系.

  請同學們由下面的例子回答問題: 投影片:(1.2.2 A)

  [生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分

  由此借助上圖總結規律如下: 投影片:(1.2.2 B)

  Ⅳ.課時小結

  1.能熟練求解一個給定集合的補集.

  2.注意一些特殊結論在以后解題中的應用. Ⅴ.課后作業

人人狠狠综合99综合久久,欧美日韩国产精品中文,极品精品国产超清自在线,人人澡欧美一区
中文字幕日本熟女 | 台湾久久三级日本三级少妇 | 亚洲精品在线视频中文网 | 日韩国产欧美亚洲v片 | 中文字幕不卡高清免费v | 日本A级按摩片春药在线观看 |