高一上冊數學說課稿
作為一位不辭辛勞的人民教師,時常要開展說課稿準備工作,認真擬定說課稿,那么問題來了,說課稿應該怎么寫?以下是小編為大家整理的高一上冊數學說課稿,希望對大家有所幫助。
高一上冊數學說課稿1
尊敬的各位專家、評委:
下午好!我的抽簽序號是xx,今天我說課的課題是人教A版必修1第一章第二節《函數及其表示》、
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
函數是中學數學中最重要的基本概念之一,函數的學習大致可分為三個階段:第一階段在義務教育階段,學習了函數的描述性概念,接觸了正比例函數,凡比例函數,一次函數,二次函數等;本章學習的函數的概念、基本性質與后續將要學習的基本初等函數(i)和(iI)是函數學習的第二階段,是對函數概念的再認識階段;第三階段在選修系列得導數及其應用的學習,使函數學習的進一步深化和提高。因此函數及其表述這一節在高中數學中,起著承上啟下的作用,函數的思想貫穿高中數學的始終,學好這章不僅在知識方面,更重要的是在函數的思想、方法方面,將會讓學生在今后的學習、工作和生活中受益無窮。
本小節介紹了函數概念,及表示方法、我將本小節分為兩課時,第一課時完成函數概念的教學,第二課時完成函數圖象的教學。這里我主要談談函數概念的教學。
函數的概念部分用三個實際例子設計數學情境,讓學生探尋變量和變量的對應關系,結合初中學習的函數理論,在集合論的基礎上,促使學生建構出函數的概念,體驗結合舊知識,探索新知識,研究新問題的快樂。
(二)學情分析
(1)在初中,學生已經學習過函數的概念,并且知道函數是變量之間的相互依賴關系、
(2)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(3)學生層次參次不齊,個體差異比較明顯。
二、目標分析
根據《函數的概念》在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
1進一步體會函數是描述變量之間的依賴關系的重要數學模型,○能用集合與對應的語言刻畫函數,體會對應關系在刻畫函數概念中的作用
2了解構成函數的要素,○理解函數定義域和值域的概念,并會求一些簡單函數的定義域。 ③由實際問題出發,培養學生探索知識和抽象概括知識等方面的能力。
(2)過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構函數概念;體驗結合舊知識探索新知識,研究新問題的快樂
(3)情感態度與價值觀
通過對函數概念形成的探究過程培養學生發現問題,探索問題,不斷超越的創新品質
(二)重點難點
重點:體會函數是描述變量之間的依賴關系的重要數學模型,正確理解函數的概念難點:函數概念及符號y=f(x)的理解
三、教法、學法分析
(一)教法
在本課的教學過程中采用設問、引導、啟發、發現的方法,并靈活應用多媒體手段,以學生為主體,創設和諧、愉悅互動的環境,組織學生自主、合作的探究活動,引導學生探索新知識。
(二)學法
首先,學生通過研究教師在課堂上提供的實例和提出的問題,展開分析和討論,發表個人的見解,接下來采用學生評價學生的方法提煉問題的中心思想。其次,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。最后,學生在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。
四、教學過程分析
(一)教學過程設計
(1)創設情境,提出問題。
引入課本的三個具體實例,引發學生的探索
對于例1:可以分別讓學生計算t=1,2,5,10時,炮彈距離地面多高,同時關注t和h的變化范圍,引導學生體會有解析式刻畫變量之間的'對應關系,啟發學生用集合與對應的語言描述函數關系:
對于例2:可以讓學生觀察圖像,找出臭氧空洞面積的年份或者臭氧空洞面積大約為20xx萬平方千米所對應的年份,引導學生體會圖像對刻畫變量之間的對應關系,并關注t和s的范圍。啟發學生再次利用集合與對應的語言描述函數關系:
對于例3:恩格爾系數與時間之間的關系是否和前兩個例題的兩個變量之間的關系相似?如何用集合和對應的語言進行描述
(2)引導探究,建構概念。
(1)進一步提問:“你覺得這三個問題有沒有共同的特點呢?”由于這個問題比較開放,所以學生,容易形成數學以外的或者不在本課研究范圍的觀點。首先采用小組合作探究的形式獲得共識,并由各小組派代表發表探究成果,接著再讓其它學生根據老師的敘述,評論、提煉出重點。作為教學的引導者,我需要及時對學生的解答進行指引。最終得出函數的概念
(2)教師概括總結學生的探究成果,形成函數概念,并進一步解釋函數概念
I、函數的三要素
Ii函數富豪的
為深化學生對函數概念的理解,還可以用函數概念解析已經學過的一次函數,二次函數,婦女比例函數等,可以設計如下表格
函數一次函數二次函數反比例函數
對應關系
定義域
值域
由學生填寫
(3)自我嘗試,初步應用。
例1、判斷下列圖像是否為函數圖像。考察學生對函數定義的理解
例2、采用課本例1,并增加一問若f(x)=—1,求x
目的是引導學生探究求函數定義域的基本方法;對于用解析式表示的函數會用解析式求
函數值或有函數值求子變量的值,進一步體會函數級號的含義,區分f(—1),f(a),f(x)例3、采用課本例2
目的:通過判斷函數的相等認識到函數的整體性,并指出在三要素中,由于值域是由定義域和對應法則決定的,所以只要兩個函數的定義域和對應關系相同,兩個函數就相等;進一步加深函數概念的理解
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
采用課后練習1、2、3
(5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成、
我設計了以下作業:
(1)必做題:課后習題A 1(2,3),2、5、6
(2)選做題:課后習題B 1、2
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高一上冊數學說課稿2
一.教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二.目標分析:
教學重點.難點
重點:集合的含義與表示方法.難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號;
(3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節所學知識.
3.情感.態度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三.教法分析
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.
2.教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創設情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節要學的內容。
設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;
(2)我國古代的四大發明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神
(三)質疑答辯,發展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;
(2)我國的小河流.讓學生充分發表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?
如果a不是集合A的元素,就說a不屬于集合A,記作a?
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節課我們學習了哪些知識內容?
2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業:
1.課后書面作業:第13頁習題1.1A組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
五.板書分析
【高一上冊數學說課稿】相關文章:
高一數學的說課稿02-18
高一上冊地理說課稿06-10
高一上冊地理說課稿11-07
高一數學優秀說課稿06-13
高一數學上冊課件02-22
高一語文上冊《雨巷》說課稿08-28
高一語文上冊《雨巷》的說課稿12-21
高一語文上冊《雨巷》說課稿11-23
人教版高一數學優秀說課稿02-17