菱形教案及練習題
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、重點、難點
1.教學重點:菱形的性質1、2.
2.教學難點:菱形的性質及菱形知識的綜合應用.
三、例題的意圖分析
本節課安排了兩個例題,例1是一道補充題,是為了鞏固菱形的性質;例2是教材P108中的例2,這是一道用菱形知識與直角三角形知識來求菱形面積的實際應用問題.此題目,除用以鞏固菱形性質外,還可以引導學生用不同的方法來計算菱形的面積,以促進學生熟練、靈活地運用知識.
四、課堂引入
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的.教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
【強調】 菱形(1)是平行四邊形;(2)一組鄰邊相等.
讓學生舉一些日常生活中所見到過的菱形的例子.
五、例習題分析
例1(補充) 已知:如圖,四邊形ABCD是菱形,F是AB上一點,DF交AC于E.
求證:∠AFD=∠CBE.
證明:∵ 四邊形ABCD是菱形,
∴ CB=CD, CA平分∠BCD.
∴ ∠BCE=∠DCE.又 CE=CE,
∴ △BCE≌△COB(SAS).
∴ ∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD, ∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2 (教材P108例2)略
六、隨堂練習
1.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為 .
2.已知菱形的兩條對角線分別是6c和8c ,求菱形的周長和面積.
3.已知菱形ABCD的周長為20c,且相鄰兩內角之比是1∶2,求菱形的對角線的長和面積.
4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF.求證:∠AEF=∠AFE.
七、課后練習
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為 8c,求菱形的高.
2.如圖,四邊形ABCD是邊長為13c的菱形,其中對角線BD長10c,求(1)對角線AC的長度;(2)菱形ABCD的面積.
【菱形教案及練習題】相關文章:
菱形的練習題07-10
《菱形》的教案09-12
菱形課件教案05-18
菱形教案范文04-13
關于矩形和菱形的練習題10-03
數學教案-菱形11-25
關于《菱形》的教案及說課稿04-21
菱形教案設計08-09
矩形菱形與正方形練習題05-10